Skip to main content

High-Performance Liquid Chromatography and Mass Spectrometry-Based Design of Proteolytically Stable Antimicrobial Peptides

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

The emergence of multiresistant bacteria worldwide together with the shortage of effective antibiotics in the market emphasizes the need for the design and development of the promising agents for the treatment of superbug-associated infections. Antimicrobial peptides (AMPs) have been considered as excellent candidates to tackle this issue, and thousands of peptides of different lengths, amino acid compositions, and mode of action have been discovered and prepared to date. Nevertheless, it is of great importance to develop innovative formulation strategies for delivering these AMPs and to improve their low bioavailability and metabolic stability, particularly against proteases, if these peptides are to find applications in the clinic and administered orally or parenterally or used as dietary supplements. The purpose of this chapter is to describe basic experimental principles, based on analytical reversed-phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry (MS), for the prospective design of orally bioavailable AMPs considering the structural characteristics of the peptides and the substrate specificity of proteases that abound in the body especially at sites of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagheri M (2015) Cationic antimicrobial peptides (AMPs): thermodynamic characterization of peptide-lipid interactions and biological efficacy of surface-tethered peptides. ChemistryOpen 4:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bagheri M, Keller S, Dathe M (2011) Interaction of W-substituted analogs of cyclo-RRRWFW with bacterial lipopolysaccharides: the role of the aromatic cluster in antimicrobial activity. Antimicrob Agents Chemother 55:788–797

    Article  CAS  PubMed  Google Scholar 

  3. Wenzel M, Chiriac AI, Otto A, Zweytick D, May C, Schumacher C, Gust R, Albada HB, Penkova M, Krämer U, Erdmann R, Metzler-Nolte N, Straus SK, Bremer E, Becher D, Brötz-Oesterhelt H, Sahl HG, Bandow JE (2014) Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc Natl Acad Sci U S A 111:E1409–E1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  PubMed  Google Scholar 

  5. Luque-Ortega JR, van’t Hof W, Veerman EC, Saugar JM, Rivas L (2008) Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J 22:1817–1828

    Article  CAS  PubMed  Google Scholar 

  6. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock REW (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768

    Article  CAS  PubMed  Google Scholar 

  8. Fjell CD, Hiss JA, Hancock REW, Schneider G (2011) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    PubMed  Google Scholar 

  9. Bagheri M, Arasteh S, Haney EF, Hancock REW (2016) Tryptic stability of synthetic bactenecin derivatives is determined by the side chain length of cationic residues and the peptide conformation. J Med Chem 59:3079–3086

    Article  CAS  PubMed  Google Scholar 

  10. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  11. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  12. Bruno BJ, Miller GD, Lim CS (2013) Basics and recent advances in peptide and protein drug delivery. Ther Deliv 4:1443–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carmona-Ribeiro AM, de Melo Carrasco LD (2014) Novel formulations for antimicrobial peptides. Int J Mol Sci 15:18040–18083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Torrent M, Valle J, Nogués MV, Boix E, Andreu D (2011) The generation of antimicrobial peptide activity: a trade-off between charge and aggregation? Angew Chem Int Ed Engl 150:10686–10689

    Article  Google Scholar 

  16. Park IY, Cho JH, Kim KS, Kim YB, Kim MS, Kim SC (2004) Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem 279:13896–13901

    Article  CAS  PubMed  Google Scholar 

  17. Friedrich C, Scott MG, Karunaratne N, Yan H, Hancock REW (1999) Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother 43:1542–1548

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    Article  CAS  PubMed  Google Scholar 

  19. Hudáky P, Kaslik G, Venekei I, Gráf L (1999) The differential specificity of chymotrypsin A and B is determined by amino acid 226. Eur J Biochem 259:528–533

    Article  PubMed  Google Scholar 

  20. Kageyama T (2002) Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell Mol Life Sci 59:288–306

    Article  CAS  PubMed  Google Scholar 

  21. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  22. Tew GN, Scott RW, Klein ML, Degrado WF (2010) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Porter EA, Wang X, Lee HS, Weisblum B, Gellman SH (2000) Non-haemolytic β-amino-acid oligomers. Nature 404:565

    Article  CAS  PubMed  Google Scholar 

  24. Scott RW, DeGrado WF, Tew GN (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19:620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cherkasov A, Hilpert K, Jenssen H, Fjell CD, Waldbrook M, Mullaly SC, Volkmer R, Hancock REW (2009) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol 4:65–74

    Article  CAS  PubMed  Google Scholar 

  26. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MB would thank the Iran National Science Foundation (reference No. 94012757), Iran’s National Elites Foundation (reference No. 15/45362–1392), and University of Tehran for the financial supports. REWH would like to acknowledge research funding from the Canadian Institutes for Health Research, and he is the holder of a Canada Research Chair in Health and Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Bagheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bagheri, M., Hancock, R.E.W. (2017). High-Performance Liquid Chromatography and Mass Spectrometry-Based Design of Proteolytically Stable Antimicrobial Peptides. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics