Hemolytic Activity of Antimicrobial Peptides

Part of the Methods in Molecular Biology book series (MIMB, volume 1548)


For antimicrobial peptides to be interesting for systemic applications, they must show low toxicity against erythrocytes. In this chapter, we describe a protocol for measuring the ability of AMPs to lyse human red blood cells, using melittin as positive control.

Key words

Antimicrobial peptides Hemolysis Red blood cells Melittin 


  1. 1.
    Oddo A, Thomsen T, Kjelstrup S, Gorey C, Franzyk H, Frimodt-Møller N, Løbner-Olesen A, Hansen PR (2016) An all-D amphipathic undecapeptide shows promising activity against colistin-resistant strains of Acinetobacter baumannii and a dual mode of action. Antimicrob Agents Chemother 60:592–9CrossRefGoogle Scholar
  2. 2.
    Ryge T, Doisy X, Ifrah D, Olsen JE, Hansen PR (2004) New indolicidin analogues with potent antibacterial activity. J Pept Res 64:171–85CrossRefPubMedGoogle Scholar
  3. 3.
    Krishnakumari V, Sharadadevi A, Sitaram N, Nagaraj R (1999) Consequences of introducing a disulfide bond into an antibacterial and hemolytic peptide. J Pept Res 54:528–89CrossRefPubMedGoogle Scholar
  4. 4.
    Dennison SR, Phoenix DA (2014) Susceptibility of sheep, human, and pig erythrocytes to haemolysis by the antimicrobial peptide Modelin 5. Eur Biophys J 43:423–32CrossRefPubMedGoogle Scholar
  5. 5.
    Liu J, Jiang J, Wu Z, Xie F (2012) Antimicrobial peptides from the skin of the Asian frog, Odorrana jingdongensis: de novo sequencing and analysis of tandem mass spectrometry data. J Proteomics 75:5807–21CrossRefPubMedGoogle Scholar
  6. 6.
    Belokoneva OS, Villegas E, Corzo G, Dai L, Nakajima T (2003) The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers. Biochim Biophys Acta 1617:22–30CrossRefPubMedGoogle Scholar
  7. 7.
    Helmerhorst E, Reijnders I, Van’t Hof W, Veerman E, Nieuw Amerongen AV (1999) Critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett 449:105–10CrossRefPubMedGoogle Scholar
  8. 8.
    Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–85CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bechinger B (1997) Structure and functions of channel forming peptides: magainin, cecropins, melittin, and alamethicin. J Membr Biol 156:197–211CrossRefPubMedGoogle Scholar
  10. 10.
    Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S, Verma R, Vishwakarma AL, Ghosh JK (2010) Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry 49:7920–9CrossRefPubMedGoogle Scholar
  11. 11.
    Munk JK, Ritz C, Fliedner FP, Frimodt-Moller N, Hansen PR (2014) Novel method to identify the optimal antimicrobial peptide in a combination matrix using anoplin as an example. Antimicrob Agents Chemother 58:1063–70CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ruiz J, Calderon J, Rondón-Villarreal P, Torres R (2014) Analysis of structure and hemolytic activity relationships of antimicrobial peptides (AMPs). In: Castillo LF, Cristancho M, Isaza G, Pinzón A, Rodríguez JMC (eds) Advances in computational biology, vol 232. Springer International Publishing, New York, NY, pp 253–8CrossRefGoogle Scholar
  13. 13.
    Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55:4–30CrossRefPubMedGoogle Scholar
  14. 14.
    Dekruijff B (1990) Cholesterol as target for toxins. Biosci Rep 10:127–30CrossRefGoogle Scholar
  15. 15.
    Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30:4671–8CrossRefPubMedGoogle Scholar
  16. 16.
    Blondelle SE, Simpkins LR, Pérez-Payá E, Houghten RA (1993) Influence of tryptophan residues on melittin’s hemolytic activity. Biochim Biophys Acta 1202:331–6CrossRefPubMedGoogle Scholar
  17. 17.
    Staubitz P, Peschel A, Nieuwenhuizen WF, Otto M, Götz F, Jung G, Jack RW (2001) Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. J Pept Sci 7:552–64CrossRefPubMedGoogle Scholar
  18. 18.
    Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501:146–50CrossRefPubMedGoogle Scholar
  19. 19.
    Shai Y, Oren Z (1996) Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem 271:7305–8CrossRefPubMedGoogle Scholar
  20. 20.
    Papo N, Oren Z, Pag U, Sahl H-G, Shai Y (2002) The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J Biol Chem 277:33913–21CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations