Skip to main content

Chemical Synthesis of Antimicrobial Peptides

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

Solid-phase peptide synthesis (SPPS) is the method of choice for chemical synthesis of peptides. In this nonspecialist review, we describe commonly used resins, linkers, protecting groups, and coupling reagents in 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS. Finally, a detailed protocol for manual Fmoc SPPS is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  2. Tulla-Puche J, El-Faham A, Galanis AS, de Oliveira E, Zompra AA, Albericio F (2015) Methods for the peptide synthesis and analysis. In: Peptide chemistry and drug design. John Wiley & Sons Inc, New York, NY, pp 11–73

    Google Scholar 

  3. Hansen PR, Oddo A (2015) Fmoc solid-phase peptide synthesis. Methods Mol Biol 1348:33–50

    Article  PubMed  Google Scholar 

  4. Fields GB, Lauer-Fields JL, Liu R-Q, Barany G (2002) Principle and practice of solid-phase peptide synthesis. In: Synthetic peptides: a user’s guide. Oxford University Press, New York, NY, pp 93–219

    Google Scholar 

  5. Jensen KJ (2013) Solid-phase peptide synthesis: an introduction. Methods Mol Biol 1047:1–21

    Article  CAS  PubMed  Google Scholar 

  6. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paradis-Bas M, Tulla-Puche J, Albericio F (2016) The road to the synthesis of “difficult peptides”. Chem Soc Rev 45:631–654

    Article  CAS  PubMed  Google Scholar 

  8. Góngora-Benítez M, Tulla-Puche J, Albericio F (2013) Handles for Fmoc solid-phase synthesis of protected peptides. ACS Comb Sci 15:217–228

    Article  PubMed  Google Scholar 

  9. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  PubMed  Google Scholar 

  10. Pedersen SW, Armishaw CJ, Strømgaard K (2013) Synthesis of peptides using tert –butyloxycarbonyl (Boc) as the α-amino protection group. Methods Mol Biol 1047:65–80

    Article  CAS  PubMed  Google Scholar 

  11. Shelton P, Jensen KJ (2013) Linkers, resins, and general procedures for solid-phase peptide synthesis. Methods Mol Biol 1047:23–41

    Article  CAS  PubMed  Google Scholar 

  12. Meldal M (1997) Properties of solid supports. Methods Enzymol 289:83–104

    Article  CAS  PubMed  Google Scholar 

  13. Rapp W, Zhang L, Habich R, Bayer E (1989) Polystyrene-polyoxyethylene graftcopolymers for high speed peptide synthesis. Peptides 1988:199–201

    Google Scholar 

  14. Meldal M (1992) PEGA: a flow stable polyethylene glycol dimethyl acrylamide copolymer for solid phase synthesis. Tetrahedron Lett 33:3077–3080

    Article  CAS  Google Scholar 

  15. García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz LJ, Gravel C, Furic R, Côté S, Tulla-Puche J, Albericio F (2006) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220

    Article  PubMed  Google Scholar 

  16. Barlos K, Chatzi O, Gatos D, Stavropoulos G (1991) 2-Chlorotrityl chloride resin. Int J Pept Protein Res 37:513–520

    CAS  PubMed  Google Scholar 

  17. Wang S-S, Gisin BF, Winter DP, Makofske R, Kulesha ID, Tzougraki C, Meienhofer J (1977) Facile synthesis of amino acid and peptide esters under mild conditions via cesium salts. J Org Chem 42:1286–1290

    Article  CAS  Google Scholar 

  18. Rink H (1987) Solid-Phase synthesis of protected peptide fragments using a tri-Alkoxy-diphenyl-methylester resin. Tetrahedron Lett 28:3787–3790

    Article  CAS  Google Scholar 

  19. Jensen KJ, Alsina J, Songster MF, Vágner J, Albericio F, Barany G (1998) Backbone Amide Linker (BAL) strategy for solid-phase synthesis of C-terminal-modified and cyclic peptides. J Am Chem Soc 123:5441–5452

    Article  Google Scholar 

  20. Alsina J, Albericio F (2003) Solid-phase synthesis of C-terminal modified peptides. Biopolymers 71:454–477

    Article  CAS  PubMed  Google Scholar 

  21. Lambert JN, Mitchell JP, Roberts KD (2001) The synthesis of cyclic peptides. J Chem Soc Perk Trans 1:471–484

    Article  Google Scholar 

  22. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602

    Article  CAS  PubMed  Google Scholar 

  23. Romoff T (2004) Racemization assays. Houben-Weyl 22b:657–769

    Google Scholar 

  24. Sheehan JC, Hess GP (1955) A new method of forming peptide bonds. J Am Chem Soc 77:1067–1068

    Article  CAS  Google Scholar 

  25. König W, Geiger R (1970) A new method for synthesis of peptides: activation of the carboxyl group with dicyclohexylcarbodiimide using 1-hydroxybenzotriazoles as additives. Chem Ber 103:788–798

    Article  PubMed  Google Scholar 

  26. Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide additive. J Am Chem Soc 115:4397–4398

    Article  CAS  Google Scholar 

  27. Subiros-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chemistry 15:9394–9403

    Article  CAS  PubMed  Google Scholar 

  28. Castro B, Dormoy JR, Evin G, Selve C (1975) Reactifs de couplage peptidique IV (1) - L’hexaflurophosphate de benzotriazolyl N-oxytrisdemethylamino phosphonium. Tetrahedron Lett 14:1219–1222

    Article  Google Scholar 

  29. Coste J, LeNguyen D, Castro B (1990) PyBoP®: a new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett 31:205–208

    Article  CAS  Google Scholar 

  30. Carpino LA, El-Faham A, Minor CA, Albericio A (1994) Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid-phase peptide synthesis. J Chem Soc Chem Commun 25:201–203

    Article  Google Scholar 

  31. Frérot E, Coste J, Pantaloni A, Dufour M-N, Jouin P (1991) PyBOP® and PyBroP: two reagents for the difficult coupling of the α, α-dialkyl amino acid, Aib. Tetrahedron 47:259–270

    Article  Google Scholar 

  32. Knorr R, Trzcieak A, Bannwarth W, Gillesen D (1989) New coupling reagents in peptide chemistry. Tetrahedron Lett 30:1927–1930

    Article  CAS  Google Scholar 

  33. Dourtoglou V, Gross B (1984) HBTU as coupling reagent for the synthesis of peptides of biological interest. Synthesis 573–574

    Google Scholar 

  34. El-Faham A, Subiros Funosas R, Prohens R, Albericio F (2009) COMU: a safer and more effective replacement for benzotriazole-based uronium coupling reagents. Chemistry 15:9404–9416

    Article  CAS  PubMed  Google Scholar 

  35. El-Faham A, Albericio F (2010) COMU: a third generation of uronium-type coupling reagents. J Pept Sci 16:6–9

    Article  CAS  PubMed  Google Scholar 

  36. Isidro-Llobet A, Alvarez M, Albericio F (2009) Amino acid-protecting groups. Chem Rev 109:2455–2504

    Article  CAS  PubMed  Google Scholar 

  37. Callahan FM, Anderson GW, Paul R, Zimmerman JE (1963) The tertiary butyl group as a blocking agent for hydroxyl, sulfhydryl and amido functions in peptide synthesis. J Am Chem Soc 85:201–207

    Article  CAS  Google Scholar 

  38. McKay FC, Albertson NF (1957) New amine-masking groups for peptide synthesis. J Am Chem Soc 79:4686–4690

    Article  CAS  Google Scholar 

  39. Carpino LA, Shroff H, Triolo SA, Mansour E-SME, Wenschuh H, Albericio F (1993) The 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) as arginine side chain protectant. Tetrahedron Lett 34:7829–7832

    Article  CAS  Google Scholar 

  40. Sieber P, Riniker B (1991) Protection of carboxamide functions by the trityl residue. Application to peptide synthesis. Tetrahedron Lett 32:739–742

    Article  CAS  Google Scholar 

  41. King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int J Pept Protein Res 36:254–266

    Google Scholar 

  42. Nielsen SL, Frimodt-Moller N, Kragelund BB, Hansen PR (2007) Structure activity study of the antibacterial peptide fallaxin. Protein Sci 16:1969–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Albericio F, Kneib-Cordonier N, Biancalana S, Gera L, Masada RI, Hudson D, Barany G (1990) Preparation and application of the PAL handle for the solid-phase peptide synthesis of C-terminal peptide amides under mild conditions. J Org Chem 55:3730–3743

    Article  CAS  Google Scholar 

  44. Solé NA, Barany G (1992) Optimization of solid-phase peptide synthesis of [Ala8]-dynorphin. J Org Chem 57:5399–5403

    Article  Google Scholar 

  45. De Luca S, Bruno G, Fattorusso R, Isernia C, Pedrone C, Morelli G (1998) New synthetic tools for peptide-tetraphenylporphyrin derivatives. Lett Pept Sci 5:269–276

    Google Scholar 

  46. Oddo A, Thomsen TT, Kjelstrup S, Gorey C, Franzyk H, Frimodt-Møller N, Løbner-Olesen A, Hansen PR (2016) An all-D amphipathic undecapeptide shows promising activity against colistin-resistant strains of Acinetobacter baumannii and a dual mode of action. Antimicrob Agents Chemother 60:592–599

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Münzker, L., Oddo, A., Hansen, P.R. (2017). Chemical Synthesis of Antimicrobial Peptides. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics