Skip to main content

Protocols for Studying Antimicrobial Peptides (AMPs) as Anticancer Agents

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

Antimicrobial peptides (AMPs) are a class of small cationic peptides that are important for host defense. In a manner that is similar to AMP-mediated destruction of microbial pathogens, certain AMPs can physically associate with the anionic lipid membrane components of cancer cells, resulting in destabilization of the lipid membrane and subsequent peptide binding to intracellular targets, which ultimately leads to the death of the cancer cell. In comparison, normal healthy cells possess a neutral membrane charge and are therefore less affected by AMPs. Based on the selective cytotoxicity of certain AMPs for cancer cells, these peptides represent a potential reservoir of novel anticancer therapeutic agents. The development and improvement of AMPs as anticancer agents requires appropriate methods for determining the effects of these peptides on the viability and function of cancer cells. In this chapter, we describe methods to assess the ability of AMPs to cause cell membrane damage (measured by propidium iodide uptake), apoptosis and/or necrosis (measured by annexin V-FLUOS/propidium iodide staining), and mitochondrial membrane destabilization (measured by 3,3′-dihexyloxacarbocyanine iodide staining), as well as reduced motility (measured by a migration and invasion assay) of cancer cells growing in suspension or as monolayers. We also describe a tubule-forming assay that can be used to assess the effect of AMPs on angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  CAS  PubMed  Google Scholar 

  2. Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:1–16

    Article  Google Scholar 

  3. Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193

    Article  CAS  PubMed  Google Scholar 

  4. Van Zoggel H, Carpentier G, Dos Santos C, Hamma-Kourbali Y, Courty J, Amiche M, Delbé J (2012) Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2. PLoS One 7:e44351

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mader JS, Salsman J, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4:612–624

    Article  CAS  PubMed  Google Scholar 

  6. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    CAS  PubMed  Google Scholar 

  7. Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Article  CAS  PubMed  Google Scholar 

  8. Clark AG, Vignjevic DM (2015) Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 36:13–22

    Article  CAS  PubMed  Google Scholar 

  9. Donovan D, Brown NJ, Bishop ET, Lewis CE (2001) Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4:113–121

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Hoskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Madera, L., Hoskin, D.W. (2017). Protocols for Studying Antimicrobial Peptides (AMPs) as Anticancer Agents. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics