Advertisement

Microfluidic DNA Stretching Device for Single-Molecule Diagnostics

  • Daisuke OnoshimaEmail author
  • Yoshinobu Baba
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1547)

Abstract

The method described here enables the automatic stretching and patterning of single DNA molecules onto a solid surface. It does not require chemical modification of the DNA or surface modification of the substrate. To detect a signal variation caused by sequence-specific dye binding or partial melting, it is crucial that the DNA molecules are arrayed in a parallel direction inside the narrow microscopic field. The method uses zigzag-shaped microgrooves in a densely-arranged molecular patterning apparatus in a microfluidic channel. By syringing through the microchannel, over 1500 DNA molecules can be arrayed simultaneously in the microgrooves. It will therefore serve as a template preparation for DNA molecular diagnosis by high-resolution imaging.

Key words

Microfluidic device Single-Molecule detection DNA stretching Optical mapping Molecular diagnosis 

Notes

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 26750146. This research is partly supported by the Japan Society for the Center of Innovation Program from Japan Science and Technology Agency, JST.

References

  1. 1.
    Neely RK, Deen J, Hofkens J (2011) Optical mapping of DNA: single-molecule-based methods for mapping genomes. Biopolymers 95:298–311CrossRefGoogle Scholar
  2. 2.
    Kim S et al (2012) Enzymatically incorporated genomic tags for optical mapping of DNA-binding proteins. Angew Chem Int Ed 51:3578–3581CrossRefGoogle Scholar
  3. 3.
    Michaeli Y et al (2013) Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem Commun 49:8599–8601CrossRefGoogle Scholar
  4. 4.
    Cerf A, Cipriany BR, Benitez JJ, Craighead HG (2011) Single DNA molecule patterning for high-throughput epigenetic mapping. Anal Chem 83:8073–8077CrossRefGoogle Scholar
  5. 5.
    Lebofsky R, Bensimon A (2003) Single DNA molecule analysis: applications of molecular combing. Brief Funct Genomic Proteomic 1:385–396CrossRefGoogle Scholar
  6. 6.
    Michalet X et al (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277:1518–1523CrossRefGoogle Scholar
  7. 7.
    Gueroui Z, Place C, Freyssingeas E, Berge B (2002) Observation by fluorescence microscopy of transcription on single combed DNA. Proc Natl Acad Sci USA 99:6005–6010CrossRefGoogle Scholar
  8. 8.
    Petit CAP, Carbeck JD (2003) Combing of molecules in microchannels (COMMIC): a method for micropatterning and orienting stretched molecules of DNA on a surface. Nano Lett 3:1141–1146CrossRefGoogle Scholar
  9. 9.
    Bensimon A et al (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265:2096–2098CrossRefGoogle Scholar
  10. 10.
    Bensimon D, Simon AJ, Croquette V, Bensimon A (1995) Stretching DNA with a receding meniscus: experiments and models. Phys Rev Lett 74:4754–4757CrossRefGoogle Scholar
  11. 11.
    Allemand JF et al (1997) pH-dependent specific binding and combing of DNA. Biophys J 73:2064–2070CrossRefGoogle Scholar
  12. 12.
    Hu J et al (1996) Imaging of single extended DNA molecules on flat (aminopropyl)triethoxysilane-mica by atomic force microscopy. Langmuir 12:1697–1700CrossRefGoogle Scholar
  13. 13.
    Woolley AT, Kelly RT (2001) Deposition and characterization of extended single-stranded DNA molecules on surfaces. Nano Lett 1:345–348CrossRefGoogle Scholar
  14. 14.
    Aline C, Thomas A, Barton RA, Craighead HG (2011) Transfer-printing of single DNA molecule arrays on graphene for high-resolution electron imaging and analysis. Nano Lett 11:4232–4238CrossRefGoogle Scholar
  15. 15.
    Gentile F et al (2012) Direct imaging of DNA fibers: the visage of double helix. Nano Lett 12:6453–6458CrossRefGoogle Scholar
  16. 16.
    Lin CJ et al (2010) Patterning nanowire and micro-nanoparticle array on micropillar-structured surface: Experiment and modeling. Biomicrofluidics 4:034103CrossRefGoogle Scholar
  17. 17.
    Charlot B et al (2014) Elongated unique DNA strand deposition on microstructured substrate by receding meniscus assembly and capillary force. Biomicrofluidics 8:014103CrossRefGoogle Scholar
  18. 18.
    Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576CrossRefGoogle Scholar
  19. 19.
    Kaji N, Okamoto Y, Tokeshi M, Baba Y (2010) Nanopillar, nanoball, and nanofibers for highly efficient analysis of biomolecules. Chem Soc Rev 39:948–956CrossRefGoogle Scholar
  20. 20.
    Yasaki H et al (2015) Microfluidic transfer of liquid interface for parallel stretching and stamping of terminal-unmodified single DNA molecules in zigzag-shaped microgrooves. Lab Chip 15:135–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute of Innovation for Future SocietyNagoya UniversityNagoyaJapan
  2. 2.ImPACT Research Center for Advanced NanobiodevicesNagoya UniversityNagoyaJapan
  3. 3.Department of Applied Chemistry, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  4. 4.Health Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TakamatsuJapan

Personalised recommendations