Digital Microfluidics Assisted Sealing of Individual Magnetic Particles in Femtoliter-Sized Reaction Wells for Single-Molecule Detection

  • Deborah Decrop
  • Elena Pérez Ruiz
  • Phalguni Tewari Kumar
  • Lisa Tripodi
  • Tadej Kokalj
  • Jeroen LammertynEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1547)


Digital microfluidics has emerged in the last years as a promising liquid handling technology for a variety of applications. Here, we describe in detail how to build up an electrowetting-on-dielectric-based digital microfluidic chip with unique advantages for performing single-molecule detection. We illustrate how superparamagnetic particles can be printed with very high loading efficiency (over 98 %) and single-particle resolution in the microwell array patterned in the Teflon-AF® surface of the grounding plate of the chip. Finally, the potential of the device for its application to single-molecule detection is demonstrated by the ultrasensitive detection of the biotinylated enzyme β-Galactosidase captured on streptavidin-coated particles in the described platform.

Key words

Digital Microfluidics Microwell Array Magnetic Particles Single-Molecule Detection Digital Bioassays 



This research was financially supported by the KU Leuven Research Council (IDO-project 10/012, OT project 13/058 and Atheromix IOF-knowledge platform), the Agency for Innovation by Science and Technology in Flanders (IWT project 121615), and the Fund for Scientific Research Flanders—FWO (G.0997.11 and G.0861.14).


  1. 1.
    Rondelez Y, Tresset G, Nakashima T (2005) Highly coupled ATP synthesis by F 1-ATPase single molecules. Nature 433:773–777CrossRefGoogle Scholar
  2. 2.
    Rissin DM, Walt DR (2006) Digital concentration readout of single enzyme molecules using femtoliter arrays Poisson statistics. Nano Lett 6:520–523Google Scholar
  3. 3.
    Rissin DM, Walt DR (2006) Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays. J Am Chem Soc 128:6286–6287CrossRefGoogle Scholar
  4. 4.
    Rissin D, Kan C, Campbell T (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 28:595–589CrossRefGoogle Scholar
  5. 5.
    Kan CW, Rivnak AJ, Campbell TG, Piech T, Rissin DM, Mösl M et al (2012) Isolationdetection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies. Lab Chip 12:977–985CrossRefGoogle Scholar
  6. 6.
    Zhang H, Nie S, Etson CM, Wang RM, Walt DR (2012) Oil-sealed femtoliter fiber-optic arrays for single molecule analysis. Lab Chip 12:2229–2239CrossRefGoogle Scholar
  7. 7.
    Kim SH, Iwai S, Araki S, Sakakihara S, Iino R, Noji H (2012) Large-scale femtoliter droplet array for digital counting of single biomolecules. Lab Chip 12:4986–4991CrossRefGoogle Scholar
  8. 8.
    Chang L, Rissin DM, Fournier DR, Piech T, Patel PP, Wilson DH et al (2012) Single molecule enzyme-linked immunosorbent assays: theoretical considerations. J Immunol Methods 378:102–115CrossRefGoogle Scholar
  9. 9.
    Witters D, Knez K, Ceyssens F, Puers R, Lammertyn J (2013) Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13:2047–2054CrossRefGoogle Scholar
  10. 10.
    Pollack MG, AD S, RB F (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101CrossRefGoogle Scholar
  11. 11.
    Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281CrossRefGoogle Scholar
  12. 12.
    Abdelgawad M, Wheeler AR (2009) The Digital Revolution: A New Paradigm for Microfluidics. Adv Mater 21:920–925CrossRefGoogle Scholar
  13. 13.
    Witters D, Vergauwe N, Vermeir S, Ceyssens F, Liekens S, Puers R et al (2011) Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications. Lab Chip 16:2790–2794CrossRefGoogle Scholar
  14. 14.
    Vergauwe N, Witters D, Atalay YT, Verbruggen B, Vermeir S, Ceyssens F et al (2011) Controlling droplet size variability of a digital lab-on-a-chip for improved bio-assay performance. Microfluid Nanofluid 11:25–34CrossRefGoogle Scholar
  15. 15.
    Vergauwe N, Witters D, Ceyssens F, Vermeir S, Verbruggen B, Puers R et al (2011) A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays. J Micromechanics Microengineering 21:054026CrossRefGoogle Scholar
  16. 16.
    Kühnemund M, Witters D, Nilsson M, Lammertyn J (2014) Circle-to-circle amplification on a digital microfluidic chip for amplified single molecule detection. Lab Chip 16:2983–2992CrossRefGoogle Scholar
  17. 17.
    KP T, Toffalini F, Witters D, Vermeir S, Rolland F, MLATM H et al (2014) Digital microfluidic chip technology for water permeability measurements on single isolated plant protoplasts. Sensors Actuators B Chem 199:479–487CrossRefGoogle Scholar
  18. 18.
    Witters D, Vergauwe N, Ameloot R, Vermeir S, De Vos D, Puers R et al (2012) Digital microfluidic high-throughput printing of single metal-organic framework crystals. Adv Mater 24:1316–1320CrossRefGoogle Scholar
  19. 19.
    Tewari KP, Vriens K, Cornaglia M, Gijs M, Kokalj T, Thevissen K et al (2015) Digital microfluidics for time-resolved cytotoxicity studies on single non-adherent yeast cells. Lab Chip 8:1852–1860Google Scholar
  20. 20.
    Kokalj T, Pérez-Ruiz E, Lammertyn J (2015) Building bio-assays with magnetic particles on a digital microfluidic platform. N Biotechnol 32(5):485–503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Deborah Decrop
    • 1
  • Elena Pérez Ruiz
    • 1
  • Phalguni Tewari Kumar
    • 1
  • Lisa Tripodi
    • 1
  • Tadej Kokalj
    • 1
  • Jeroen Lammertyn
    • 1
    Email author
  1. 1.MeBioS - Biosensors, Department of BiosystemsKU LeuvenLeuvenBelgium

Personalised recommendations