Advertisement

Using Electrophoretic Immunoassay to Monitor Hormone Secretion

  • Shusheng Lu
  • Robert T KennedyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1547)

Abstract

It has been demonstrated that microfluidic systems allow integration of sampling, reagent mixing, and rapid electrophoretic analysis. They have also proven useful for culturing cells wherein control over the environment allows novel and automated experiments. Here, we describe a microchip-based electrophoresis assay that allows cell culture and hormone monitoring. An online gradient generator can control cell culture condition precisely. This system has been applied for Pancreas islets’ glucose sensitivity studies.

Key words

Microfluidics Perfusion culture Capillary electrophoresis Competitive immunoassay Islets of Langerhans Diabetes Glucose sensitivity 

References

  1. 1.
    Bergsten P, Grapengiesser E, Gylfe E et al (1994) Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem 269:8749–8753Google Scholar
  2. 2.
    Liu Y-J, Tengholm A, Grapengiesser E et al (1998) Origin of slow and fast oscillations of Ca2+ in mouse pancreatic islets. J Physiol 508(2):471–481CrossRefGoogle Scholar
  3. 3.
    Zraika S, Dunlop M, Proietto J, Andrikopoulos S (2002) The hexosamine biosynthesis pathway regulates insulin secretion via protein glycosylation in mouse islets. Arch Biochem Biophys 405:275–279CrossRefGoogle Scholar
  4. 4.
    Mehling M, Tay S (2014) Microfluidic cell culture. Curr Opin Biotechnol 25:95–102CrossRefGoogle Scholar
  5. 5.
    Gómez-Sjöberg R, Leyrat AA, Pirone DM et al (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563CrossRefGoogle Scholar
  6. 6.
    Huang N-T, Chen W, Oh B-R et al (2012) An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip 12:4093–4101CrossRefGoogle Scholar
  7. 7.
    Toriello NM, Douglas ES, Mathies RA (2005) Microfluidic device for electric field-driven single-cell capture and activation. Anal Chem 77:6935–6941CrossRefGoogle Scholar
  8. 8.
    Mohammed JS, Wang Y, Harvat TA et al (2009) Microfluidic device for multimodal characterization of pancreatic islets. Lab Chip 9:97–106CrossRefGoogle Scholar
  9. 9.
    Wu M-H, Huang S-B, Lee G-B (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939–956CrossRefGoogle Scholar
  10. 10.
    Schultz NM, Huang L, Kennedy RT (1995) Capillary electrophoresis-based immunoassay to determine insulin content and insulin secretion from single islets of Langerhans. Anal Chem 67:924–929CrossRefGoogle Scholar
  11. 11.
    Kulkarni R (2004) The islet β-cell. Int J Biochem Cell Biol 36:365–371CrossRefGoogle Scholar
  12. 12.
    Kennedy RT, Kauri LM, Dahlgren GM, Jung S-K (2002) Metabolic oscillations in beta-cells. Diabetes 51(Suppl 1):S152–S161CrossRefGoogle Scholar
  13. 13.
    Henquin JC, Ishiyama N, Nenquin M et al (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51(Suppl 1):S60–S67CrossRefGoogle Scholar
  14. 14.
    Simon C, Brandenberger G (2002) Ultradian oscillations of insulin secretion in humans. Diabetes 51(Suppl 1):S258–S261CrossRefGoogle Scholar
  15. 15.
    Peschke E, Peschke D (1998) Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia 41:1085–1092CrossRefGoogle Scholar
  16. 16.
    Shackman JG, Dahlgren GM, Peters JL, Kennedy RT (2005) Perfusion and chemical monitoring of living cells on a microfluidic chip. Lab Chip 5:56–63CrossRefGoogle Scholar
  17. 17.
    Dishinger JF, Reid KR, Kennedy RT (2009) Quantitative monitoring of insulin secretion from microfluidic chip. Anal Chem 81:3119–3127CrossRefGoogle Scholar
  18. 18.
    Reid KR, Kennedy RT (2009) Continuous operation of microfabricated electrophoresis devices for 24 hours and application to chemical monitoring of living cells. Anal Chem 81:6837–6842CrossRefGoogle Scholar
  19. 19.
    Han BG, Hao C-M, Tchekneva EE et al (2008) Markers of glycemic control in the mouse: comparisons of 6-hand overnightfasted blood glucoses to Hb A1c. Am J Physiol Endocrinol Metab 295:E981–E986CrossRefGoogle Scholar
  20. 20.
    Gao N, Le Lay J, Qin W et al (2010) Foxa1 and Foxa2 maintain the metabolic and secretory features of the mature beta-cell. Mol Endocrinol 24:1594–1604CrossRefGoogle Scholar
  21. 21.
    Jacobson SC, Ermakov SV, Ramsey JM (1999) Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices. Anal Chem 71:3273–3276CrossRefGoogle Scholar
  22. 22.
    Shackman JG, Watson CJ, Kennedy RT (2004) High-throughput automated post-processing of separation data. J Chromatogr A 1040:273–282CrossRefGoogle Scholar
  23. 23.
    Pralong WF, Bartley C, Wollheim CB (1990) Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J 9:53–60Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MichiganAnn ArborUSA
  2. 2.Department of PharmacologyUniversity of MichiganAnn ArborUSA

Personalised recommendations