Advertisement

Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Patterning Capture Antibodies Using Microcontact Printing and Dry-Film Resists

  • Yuksel Temiz
  • Robert D. Lovchik
  • Emmanuel DelamarcheEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1547)

Abstract

The miniaturization of immunoassays using microfluidic devices is attractive for many applications, but an important challenge remains the patterning of capture antibodies (cAbs) on the surface of microfluidic structures. Here, we describe how to pattern cAbs on planar poly(dimethylsiloxane) (PDMS) stamps and how to microcontact print the cAbs on a dry-film resist (DFR). DFRs are new types of photoresists having excellent chemical resistance and good mechanical, adhesive, and optical properties. Instead of being liquid photoresists, DFRs are thin layers that are easy to handle, cut, photo-pattern, and laminate over surfaces. We show how to perform a simple fluorescence immunoassay using anti-biotin cAbs patterned on a 50-μm-thick DF-1050 DFR, Atto 647N-biotin analytes, and capillary-driven chips fabricated in silicon.

Key words

Microcontact printing Patterning antibodies Dry-film resist Microfluidics Immunoassay PDMS 

References

  1. 1.
    Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20:2488–2503CrossRefGoogle Scholar
  2. 2.
    Auroux PA, Iossifidis D, Reyes DR et al (2002) Micro total analysis systems. 2. Analyticalstandard operations and applications. Anal Chem 74:2637–2652CrossRefGoogle Scholar
  3. 3.
    Temiz Y, Lovchik RD, Kaigala GV et al (2015) Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng 132:156–175CrossRefGoogle Scholar
  4. 4.
    Hitzbleck M, Delamarche E (2013) Reagents in microfluidics: an ‘in’ and ‘out’ challenge. Chem Soc Rev 42:8494–8516CrossRefGoogle Scholar
  5. 5.
    Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233–244CrossRefGoogle Scholar
  6. 6.
    Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119:142–147CrossRefGoogle Scholar
  7. 7.
    Ziegler J, Zimmermann M, Hunziker P et al (2008) High-performance immunoassays based on through-stencil patterned antibodies and capillary systems. Anal Chem 80:1763–1769CrossRefGoogle Scholar
  8. 8.
    Foley J, Schmid H, Stutz R et al (2005) Microcontact printing of proteins inside microstructures. Langmuir 21:11296–11303CrossRefGoogle Scholar
  9. 9.
    Bernard A, Michel B, Delamarche E (2001) Micromosaic immunoassays. Anal Chem 73:8–12CrossRefGoogle Scholar
  10. 10.
    Fan R, Vermesh O, Srivastava A et al (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26:1373–1378CrossRefGoogle Scholar
  11. 11.
    Niemeyer CM, Sano T, Smith CL et al (1994) Oligonucleotide directed self-assembly of proteins: semisynthetic DNA-streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res 22:5530CrossRefGoogle Scholar
  12. 12.
    Yatsushiro S, Akamine R, Yamamura S et al (2011) Quantitative analysis of serum procollagen type I C-terminal propeptide by immunoassay on microchip. PLoS One 6:e18807CrossRefGoogle Scholar
  13. 13.
    Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl Phys Lett 63:2002–2004CrossRefGoogle Scholar
  14. 14.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar
  15. 15.
    Bernard A, Delamarche E, Schmid H et al (1998) Printing patterns of proteins. Langmuir 14:2225–2229CrossRefGoogle Scholar
  16. 16.
    Bernard A, Renault JP, Michel B et al (2000) Microcontact printing of proteins. Adv Mater 12:1067–1070CrossRefGoogle Scholar
  17. 17.
    Tan JL, Tien J, Chen CS (2001) Microcontact printing of proteins on mixed self-assembled monolayers. Langmuir 18:519–523CrossRefGoogle Scholar
  18. 18.
    Coyer SR, García AJ, Delamarche E (2007) Facile preparation of complex protein architectures with sub-100-nm resolution on surfaces. Angew Chem Int Ed 46:6837–6840CrossRefGoogle Scholar
  19. 19.
    Vulto P, Glade N, Altomare L et al (2005) Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 5:158–162CrossRefGoogle Scholar
  20. 20.
    Temiz Y, Delamarche E (2014) ‘Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips. J Micromech Microeng 24:097001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Yuksel Temiz
    • 1
  • Robert D. Lovchik
    • 1
  • Emmanuel Delamarche
    • 1
    Email author
  1. 1.IBM Research GmbHRüschlikonSwitzerland

Personalised recommendations