Skip to main content

Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a “Chip-Olate” Process

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1547))

Abstract

The fabrication of silicon-based microfluidic chips is invaluable in supporting the development of many microfluidic concepts for research in the life sciences and in vitro diagnostic applications such as the realization of miniaturized immunoassays using capillary-driven chips. While being extremely abundant, the literature covering microfluidic chip fabrication and assay development might not have addressed properly the challenge of fabricating microfluidic chips on a wafer level or the need for dicing wafers to release chips that need then to be further processed, cleaned, rinsed, and dried one by one. Here, we describe the “chip-olate” process wherein microfluidic structures are formed on a silicon wafer, followed by partial dicing, cleaning, and drying steps. Then, integration of reagents (if any) can be done, followed by lamination of a sealing cover. Breaking by hand the partially diced wafer yields individual chips ready for use.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  2. Folch A (2012) Introduction to BioMEMS. CRC Press, Boca Raton

    Google Scholar 

  3. Delamarche E, Bernard A, Schmid H et al (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276:779–781

    Article  CAS  Google Scholar 

  4. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point–of–care diagnostic devices. Lab Chip 12:2118–2134

    Article  CAS  Google Scholar 

  5. Jokerst JC, Emory JM, Henry CS (2012) Advances in microfluidics for environmental analysis. Analyst 137:24–34

    Article  CAS  Google Scholar 

  6. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  CAS  Google Scholar 

  7. Ng AHC, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397:991–1007

    Article  CAS  Google Scholar 

  8. Gervais L, de Rooij N, Delamarche E (2011) Microfluidic chips for point–of–care immunodiagnostics. Adv Mater 23:H151–H176

    Article  CAS  Google Scholar 

  9. Lee H, Ham D, Westervelt RM (eds) (2007) CMOS biotechnology. Springer, New York

    Google Scholar 

  10. Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluidics 5:145–174

    Article  CAS  Google Scholar 

  11. Mark D, Haeberle S, Roth G et al (2010) Microfluidic lab–on–a–chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  CAS  Google Scholar 

  12. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583

    Article  CAS  Google Scholar 

  13. Juncker D, Schmid H, Drechsler U et al (2002) Autonomous microfluidic capillary system. Anal Chem 74:6139–6144

    Article  CAS  Google Scholar 

  14. Gervais L, Delamarche E (2009) Toward one–step point–of–care immunodiagnostics using capillary–driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337

    Article  CAS  Google Scholar 

  15. O’Farrell B (2009) Lateral flow immunoassay. Humana Press, New York

    Google Scholar 

  16. Wild D (2013) The immunoassay handbook. Elsevier, Oxford, UK

    Google Scholar 

  17. Lorenz H, Paratte L, Luthier R et al (1996) Low–cost technology for multilayer electroplated parts using laminated dry film resist. Sens Actuator A-Phys 53:364–368

    Article  CAS  Google Scholar 

  18. Vulto P, Glade N, Altomare L et al (2005) Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 5:158–162

    Article  CAS  Google Scholar 

  19. Wangler N, Gutzweiler L, Kalkandjiev K et al (2011) High–resolution permanent photoresist laminate TMMF for sealed microfluidic structures in biological applications. J Micromech Microeng 21:095009

    Article  Google Scholar 

  20. Temiz Y, Delamarche E (2014) “Chip–olate” and dry–film resists for efficient fabrication, singulation and sealing of microfluidic chips. J Micromech Microeng 24:097001

    Article  Google Scholar 

  21. Ito T, Kawaguchi T, Miyoshi H et al (2007) Characterization of a microfluidic device fabricated using a photosensitive sheet. J Micromech Microeng 17:432–438

    Article  CAS  Google Scholar 

  22. Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Delamarche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Temiz, Y., Delamarche, E. (2017). Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a “Chip-Olate” Process. In: Taly, V., Viovy, JL., Descroix, S. (eds) Microchip Diagnostics. Methods in Molecular Biology, vol 1547. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6734-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6734-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6732-2

  • Online ISBN: 978-1-4939-6734-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics