Advertisement

Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a “Chip-Olate” Process

  • Yuksel Temiz
  • Emmanuel DelamarcheEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1547)

Abstract

The fabrication of silicon-based microfluidic chips is invaluable in supporting the development of many microfluidic concepts for research in the life sciences and in vitro diagnostic applications such as the realization of miniaturized immunoassays using capillary-driven chips. While being extremely abundant, the literature covering microfluidic chip fabrication and assay development might not have addressed properly the challenge of fabricating microfluidic chips on a wafer level or the need for dicing wafers to release chips that need then to be further processed, cleaned, rinsed, and dried one by one. Here, we describe the “chip-olate” process wherein microfluidic structures are formed on a silicon wafer, followed by partial dicing, cleaning, and drying steps. Then, integration of reagents (if any) can be done, followed by lamination of a sealing cover. Breaking by hand the partially diced wafer yields individual chips ready for use.

Key words

Microfluidic chip fabrication Capillary-driven flow Dry-film resist Chip singulation Sealing 

References

  1. 1.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  2. 2.
    Folch A (2012) Introduction to BioMEMS. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Delamarche E, Bernard A, Schmid H et al (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276:779–781CrossRefGoogle Scholar
  4. 4.
    Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point–of–care diagnostic devices. Lab Chip 12:2118–2134CrossRefGoogle Scholar
  5. 5.
    Jokerst JC, Emory JM, Henry CS (2012) Advances in microfluidics for environmental analysis. Analyst 137:24–34CrossRefGoogle Scholar
  6. 6.
    Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189CrossRefGoogle Scholar
  7. 7.
    Ng AHC, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397:991–1007CrossRefGoogle Scholar
  8. 8.
    Gervais L, de Rooij N, Delamarche E (2011) Microfluidic chips for point–of–care immunodiagnostics. Adv Mater 23:H151–H176CrossRefGoogle Scholar
  9. 9.
    Lee H, Ham D, Westervelt RM (eds) (2007) CMOS biotechnology. Springer, New YorkGoogle Scholar
  10. 10.
    Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluidics 5:145–174CrossRefGoogle Scholar
  11. 11.
    Mark D, Haeberle S, Roth G et al (2010) Microfluidic lab–on–a–chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182CrossRefGoogle Scholar
  12. 12.
    Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583CrossRefGoogle Scholar
  13. 13.
    Juncker D, Schmid H, Drechsler U et al (2002) Autonomous microfluidic capillary system. Anal Chem 74:6139–6144CrossRefGoogle Scholar
  14. 14.
    Gervais L, Delamarche E (2009) Toward one–step point–of–care immunodiagnostics using capillary–driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337CrossRefGoogle Scholar
  15. 15.
    O’Farrell B (2009) Lateral flow immunoassay. Humana Press, New YorkGoogle Scholar
  16. 16.
    Wild D (2013) The immunoassay handbook. Elsevier, Oxford, UKGoogle Scholar
  17. 17.
    Lorenz H, Paratte L, Luthier R et al (1996) Low–cost technology for multilayer electroplated parts using laminated dry film resist. Sens Actuator A-Phys 53:364–368CrossRefGoogle Scholar
  18. 18.
    Vulto P, Glade N, Altomare L et al (2005) Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 5:158–162CrossRefGoogle Scholar
  19. 19.
    Wangler N, Gutzweiler L, Kalkandjiev K et al (2011) High–resolution permanent photoresist laminate TMMF for sealed microfluidic structures in biological applications. J Micromech Microeng 21:095009CrossRefGoogle Scholar
  20. 20.
    Temiz Y, Delamarche E (2014) “Chip–olate” and dry–film resists for efficient fabrication, singulation and sealing of microfluidic chips. J Micromech Microeng 24:097001CrossRefGoogle Scholar
  21. 21.
    Ito T, Kawaguchi T, Miyoshi H et al (2007) Characterization of a microfluidic device fabricated using a photosensitive sheet. J Micromech Microeng 17:432–438CrossRefGoogle Scholar
  22. 22.
    Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.IBM Research GmbHRüschlikonSwitzerland

Personalised recommendations