Advertisement

Microfluidics-Enabled Diagnostic Systems: Markets, Challenges, and Examples

  • Holger BeckerEmail author
  • Claudia Gärtner
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1547)

Abstract

Microfluidics has become an important tool for the commercial product development in diagnostics. This article will focus on current technical demands during the development process such as material and integration challenges. Furthermore, we present data on the diagnostics market as well as examples of microfluidics-enabled systems currently under commercial development or already on the market.

Key words

Microfluidics Commercialization Product development Diagnostic cartridge 

Notes

Acknowledgments

Part of the work was carried out within the frame of the EU-FP7 project ROUTINE, contract no. 304941 (www.routinefp7.eu). We thank Nicolas Demierre, Keith Page, Jeroen Nieuwenhuis, Stephen Floe, and Klaus Schindlbeck for providing the images for Subheading3.

References

  1. 1.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B-Chem 1:244–248CrossRefGoogle Scholar
  2. 2.
    Yetisen AK, Volpatti LR (2014) Patent protection and licensing in microfluidics. Lab Chip 14:2217–2225CrossRefGoogle Scholar
  3. 3.
    Becker H (2010) Lost in translation. Lab Chip 10:813–815CrossRefGoogle Scholar
  4. 4.
    Klapperich CM (2009) Microfluidic diagnostics: time for industry standards. Expert Rev Med Devices 6:211–213CrossRefGoogle Scholar
  5. 5.
    Becker H (2010) One size fits all? Lab Chip 10:1894–1897CrossRefGoogle Scholar
  6. 6.
    van Heeren H (2012) Standards for connecting microfluidic devices? Lab Chip 6:1022–1025CrossRefGoogle Scholar
  7. 7.
    Zhixiong H, Wenli L, Baoyu H et al (2014) Metrological standardizing for future microfluidic-based point-of-care diagnostic products. Sens Transducers 173:250–255Google Scholar
  8. 8.
    van Heeren H, Tantra R, Salomon P (2015) Microfluidic devices: a road forward by standardization of interconnects and classification. Microfluid Nanofluidics 19(5):1203–1207CrossRefGoogle Scholar
  9. 9.
    Gärtner C, Becker H, Anton B et al (2004) Microfluidic toolbox: tools and standardization solutions for microfluidic devices for life sciences applications. Proc. SPIE 5345, Microfluidics, BioMEMS, and Medical Microsystems II, pp 159–162. doi: 10.1117/12.538373
  10. 10.
    Mark D, Häberle S, Roth G et al (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182CrossRefGoogle Scholar
  11. 11.
    Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251CrossRefGoogle Scholar
  12. 12.
    Clarke SF, Foster JR (2012) A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br J Biomed Sci 69(2):83–93Google Scholar
  13. 13.
  14. 14.
    Yole Developpement, Emerging Markets for Microfluidic Applications, Report 2011Google Scholar
  15. 15.
    Couillard D (2006) Managing in a sea of uncertainty: leadership, learning, and resources for the high tech firm. Presses internationales Polytechnique, MontrealGoogle Scholar
  16. 16.
    Yager P, Edwards T, Fu E et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418CrossRefGoogle Scholar
  17. 17.
    Becker H (2009) Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9:2119–2122CrossRefGoogle Scholar
  18. 18.
    Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134CrossRefGoogle Scholar
  19. 19.
    Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32(7):347–350CrossRefGoogle Scholar
  20. 20.
    Bousse L, Mouradian S, Minalla A et al (2001) Protein sizing on a microchip. Anal Chem 73(6):1207–1212CrossRefGoogle Scholar
  21. 21.
    Becker H (2008) Microfluidics: a technology coming of age. Med Device Technol 19(3):21–24Google Scholar
  22. 22.
    Lagally ET, Scherer JR, Blazej RG et al (2004) Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem 76(11):3162–3170CrossRefGoogle Scholar
  23. 23.
    Easley CJ, Karlinsey JM, Bienvenue JM et al (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci USA 103(51):19272–19277CrossRefGoogle Scholar
  24. 24.
    Kim J, Johnson M, Hill P et al (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol 1:574–586CrossRefGoogle Scholar
  25. 25.
    Mukherjee S, Kang TG, Chen Y et al (2009) Plasma separation from blood: the ‘lab-on-a-chip’approach. Crit Rev Biomed Eng 37:517–529CrossRefGoogle Scholar
  26. 26.
    Kersaudy-Kerhoas M, Sollier E (2013) Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13:3323–3346CrossRefGoogle Scholar
  27. 27.
    Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111CrossRefGoogle Scholar
  28. 28.
    Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluidics 7(1):1–2CrossRefGoogle Scholar
  29. 29.
    Li S, Xu Z, Mazzeo A et al (2008) Review of production of microfluidic devices: material, manufacturing, and metrology. Proc. MEMS, MOEMS, and Micromachining III: Proceedings of SPIE 6993:69930F. doi: 10.1117/12.781942
  30. 30.
    Hlawatsch N, Klemm R, Carstens C et al (2012) A lab-on-a-chip system for the development of complex assays using modular microfluidic components. Proc SPIE 8251, Microfluidics, BioMEMS, and Medical Microsystems X, 82510D. doi:  10.1117/12.910269
  31. 31.
    Jen C, Wu C, Lin Y et al (2003) Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip 3:77–81CrossRefGoogle Scholar
  32. 32.
    Hagmeyer B, Zechnall F, Stelzle M (2014) Towards plug and play filling of microfluidic devices by utilizing networks of capillary stop valves. Biomicrofluidics 198(5). Article 056501Google Scholar
  33. 33.
    Hu G, Li D (2007) Multiscale phenomena in microfluidics and nanofluidics. Chem Eng Sci 62:3443–3454CrossRefGoogle Scholar
  34. 34.
    Erickson D (2005) Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluid Nanofluidics 1:301–318CrossRefGoogle Scholar
  35. 35.
    Marques M, Fernandes P (2011) Microfluidic devices: useful tools for bioprocess intensification. Molecules 16:8368–8401CrossRefGoogle Scholar
  36. 36.
    Becker H, Gärtner C (2012) Polymeric microfluidic devices for high performance optical imaging and detection methods. In: Fritzsche W, Popp J (eds) Optical nano- and microsystems for bioanalytics. Springer, Berlin, pp. 271–288CrossRefGoogle Scholar
  37. 37.
    Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46(11):2396–2406CrossRefGoogle Scholar
  38. 38.
    Zhang X, Haswell SJ (2006) Materials matter in microfluidic devices. MRS Bull 31(2):95–99CrossRefGoogle Scholar
  39. 39.
    Hitzbleck M, Delamarche E (2013) Reagents in microfluidics: an “in” and “out”challenge. Chem Soc Rev 42:8494–8516CrossRefGoogle Scholar
  40. 40.
    Lauks IR, Wieck HJ, Zelin MP et al (1988) Disposable sensing device for real time fluid analysis. US 5096669 A, priority date 15 Sep 1988Google Scholar
  41. 41.
    Chen D, Mauk M, Qiu X et al (2010) An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed Microdevices 12(4):705–719CrossRefGoogle Scholar
  42. 42.
    Disch A, Mueller C, Reinecke H (2007) Low cost production of disposable microfluidics by blister packaging technology. Conf Proc IEEE Eng Med Biol Soc 2007:6323–6326Google Scholar
  43. 43.
    Hugo S, Land K, Becker H (2013) Characterization of microfluidic components for low-cost point-of-care devices. Proc. MicroTAS 2013, Freiburg, pp 461–463Google Scholar
  44. 44.
    Jokerst JV, Floriano PN, Christodoulides N et al (2008) Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4+ T cell counts at the point-of-need. Lab Chip 8:2079–2090CrossRefGoogle Scholar
  45. 45.
    Selvakumar S, Linares R, Oppenheimer A et al (2012) Variation analysis of flow rate delivered using a blister pump. Proc. SPIE 8251, Microfluidics, BioMEMS, and Medical Microsystems X, 82510I. doi:  10.1117/12.907502
  46. 46.
    Inamdar T, Anthony BW (2013) Characterizing fluidic seals for on-board reagent delivery. Proc. SPIE 8615, Microfluidics, BioMEMS, and Medical Microsystems XI, 861516. doi: 10.1117/12.2006257
  47. 47.
    van Oordt T, Barb Y, Smetana J et al (2013) Miniature stick-packaging—an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip 13(15):2888–2892CrossRefGoogle Scholar
  48. 48.
    Garcia E, Kirkham JR, Hatch AV et al (2004) Controlled microfluidic reconstitution of functional protein from an anhydrous storage depot. Lab Chip 4(1):78–82CrossRefGoogle Scholar
  49. 49.
    Seetharam R, Wada Y, Ramachandran S et al (2006) Long-term storage of bionanodevices by freezing and lyophilization. Lab Chip 6:1239–1242CrossRefGoogle Scholar
  50. 50.
    Fritzsche W, Popp J (2012) Bioanalytics, in optical nano- and microsystems for bioanalytics, Springer, Berlin, pp 271–288Google Scholar
  51. 51.
    Pires NMM, Dong T, Hanke U et al (2014) Recent developments in optical detection technologies in lab-on-a-chipdevices for biosensing applications. Sensors 14:15458–15479CrossRefGoogle Scholar
  52. 52.
    Rackus DG, Shamsi MH, Wheeler AR (2015) Electrochemistry, biosensors and microfluidics: convergence of fields. Chem Soc Rev 44:5320–5340CrossRefGoogle Scholar
  53. 53.
    Lee H, Liu Y, Ham D et al (2007) Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab Chip 7(3):331–337CrossRefGoogle Scholar
  54. 54.
    Huang Y, Mason AJ (2013) Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19):3929–3934CrossRefGoogle Scholar
  55. 55.
    Pekas N, Porter MD, Tondra M et al (2004) Giant magnetoresistance monitoring of magnetic picodroplets in an integrated microfluidic system. Appl Phys Lett 85(20):4783–4785CrossRefGoogle Scholar
  56. 56.
    Becker H, Carstens C, Kuhlmeier D et al (2012) Stationary fluidics: moving target molecules on beads through non-moving liquids for molecular diagnostic assays. Proc MicroTAS 2012, Okinawa, pp 791–793Google Scholar
  57. 57.
    Ashok PC, Dholakia K (2012) Microfluidic Raman spectroscopy for biochemical sensing and analysis. In: Fritzsche W, Popp J (eds) Bioanalytics, in optical nano- and microsystems for bioanalytics. Springer, Berlin, pp. 247–268CrossRefGoogle Scholar
  58. 58.
    Becker H (2009) It’s the economy. Lab Chip 9:2759–2762CrossRefGoogle Scholar
  59. 59.
  60. 60.
  61. 61.
    Becker H, Klemm R, Dietze W et al (2015) Sample-in answer-out point-of-care cartridge for fast MTB diagnostics as part of a universal diagnostics system for global health applications. Proc. MicroTAS 2015, Gyeongju, pp 963–965Google Scholar
  62. 62.
    Kim L (2013) Overview on the microfluidic diagnostics commercial landscape. In: Jenkins G, Mansfield CD (eds) Microfluidic diagnostics, methods in molecular biology, Springer, New York, vol 99. pp 65–84.Google Scholar
  63. 63.
    Laroy W, Ladestein P (2015) MyCartis NV company profile. Biomark Med 9(2):85–88CrossRefGoogle Scholar
  64. 64.
    Hefti M, Raymond F, lmmink A et al (2013) Next generation, fast and accurate point-of-care test for NT-proBNP based on Magnotech technology. Point Care 12(4):171Google Scholar
  65. 65.
    Dittmer WU, Evers TH, Hardemann WM et al (2010) Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor. Clin Chim Acta 411:868–873CrossRefGoogle Scholar
  66. 66.
    Wilson PK, Szymansk M, Porter R (2013) Standardisation of metalloimmunoassay protocols for assessment of silver nanoparticle antibody conjugates. J Immunol Methods 387:303–307CrossRefGoogle Scholar
  67. 67.
    http://www.celula-inc.com/. Accessed 5 Dec 2015
  68. 68.
    http://www.pixcell-medical.com/. Accessed 5 Dec 2015
  69. 69.
    Gubala V, Harris LF, Ricco A et al (2012) Point of care diagnostics: status and future. Anal Chem 84:487–515CrossRefGoogle Scholar
  70. 70.

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.microfluidic ChipShop GmbHJenaGermany

Personalised recommendations