Skip to main content

A Protocol for Isolation and Proteomic Characterization of Distinct Extracellular Vesicle Subtypes by Sequential Centrifugal Ultrafiltration

  • Protocol
  • First Online:
Exosomes and Microvesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1545))

Abstract

Scientific and clinical interest in extracellular vesicles (EVs) has increased rapidly as evidence mounts that they may constitute a new signaling paradigm. Recent studies have highlighted EVs carry preassembled complex biological information that elicit pleiotropic responses in target cells. It is well recognized that cells secrete essentially two EV subtypes that can be partially separated by differential centrifugation (DC): the larger size class (referred to as “microvesicles” or “shed microvesicles,” sMVs) is heterogeneous (100–1500 nm), while the smaller size class (referred to as “exosomes”) is relatively homogeneous in size (50–150 nm). A key issue hindering progress in understanding underlying mechanisms of EV subtype biogenesis and cargo selectivity has been the technical challenge of isolating homogeneous EV subpopulations suitable for molecular analysis. In this protocol we reveal a novel method for the isolation, purification, and characterization of distinct EV subtypes: exosomes and sMVs. This method, based on sequential centrifugal ultrafiltration (SCUF), affords unbiased isolation of EVs from conditioned medium from a human colon cancer cell model. For both EV subtypes, this protocol details extensive purification and characterization based on dynamic light scattering, cryoelectron microscopy, quantitation, immunoblotting, and comparative label-free proteome profiling. This analytical SCUF method developed is potentially scalable using tangential flow filtration and provides a solid foundation for future in-depth functional studies of EV subtypes from diverse cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest. 126(4):1152–62

    Google Scholar 

  2. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  3. van Niel G, Porto-Carreiro I, Simoes S et al (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21

    Article  PubMed  Google Scholar 

  4. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146

    Article  CAS  PubMed  Google Scholar 

  5. Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  CAS  PubMed  Google Scholar 

  6. Nazarenko I, Rana S, Baumann A et al (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678

    Article  CAS  PubMed  Google Scholar 

  7. Webber J, Steadman R, Mason MD et al (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70:9621–9630

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Xiang X, Zhuang X et al (2010) Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 176:2490–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiang X, Poliakov A, Liu C et al (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124:2621–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    Article  CAS  PubMed  Google Scholar 

  11. Hao S, Ye Z, Li F et al (2006) Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Exp Oncol 28:126–131

    CAS  PubMed  Google Scholar 

  12. Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greening DW, Gopal SK, Xu R et al (2015) Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol 40:72–81

    Article  CAS  PubMed  Google Scholar 

  14. Greening DW, Gopal SK, Mathias RA et al (2015) Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin Cell Dev Biol 40:60–71

    Article  CAS  PubMed  Google Scholar 

  15. E-LA S, Mager I, Breakefield XO et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  Google Scholar 

  16. Tauro BJ, Greening DW, Mathias RA et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304

    Article  CAS  PubMed  Google Scholar 

  17. Ji H, Greening DW, Barnes TW et al (2013) Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics 13:1672–1686

    Article  CAS  PubMed  Google Scholar 

  18. Tauro BJ, Greening DW, Mathias RA et al (2013) Two distinct population of exosomes released from LIM1863 colon carcinoma cells. Mol Cell Proteomics 12:587–598

    Article  CAS  PubMed  Google Scholar 

  19. Tauro BJ, Mathias RA, Greening DW et al (2013) Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics 12:2148–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ji H, Chen M, Greening DW et al (2014) Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. PLoS One 9, e110314

    Article  PubMed  PubMed Central  Google Scholar 

  21. Greening DW, Ji H, Chen M, Robinson BW, Dick IM, Creaney J, Simpson RJ. (2016) Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo. Sci Rep. 6:32643

    Google Scholar 

  22. Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA. (2016) Human Endometrial Exosomes Contain Hormone-Specific Cargo Modulating Trophoblast Adhesive Capacity: Insights into Endometrial-Embryo Interactions. Biol Reprod. 94(2):38

    Google Scholar 

  23. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    Article  CAS  PubMed  Google Scholar 

  24. Clancy JW, Sedgwick A, Rosse C et al (2015) Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat Commun 6:6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pospichalova V, Svoboda J, Dave Z et al (2015) Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles 4:25530

    Article  PubMed  Google Scholar 

  26. Di Vizio D, Kim J, Hager MH et al (2009) Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69:5601–5609

    Article  PubMed  PubMed Central  Google Scholar 

  27. Antonyak MA, Wilson KF, Cerione RA (2012) R(h)oads to microvesicles. Small GTPases 3:219–224

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xu R, Greening DW, Rai A et al (2015) Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods 87:11–25

    Article  CAS  PubMed  Google Scholar 

  29. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  30. Witwer KW, Buzas EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:24009894

    Article  Google Scholar 

  31. Gyorgy B, Hung ME, Breakefield XO et al (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464

    Article  CAS  PubMed  Google Scholar 

  32. Nordin JZ, Lee Y, Vader P et al (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11:879–883

    CAS  PubMed  Google Scholar 

  33. Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2:24009890

    Article  Google Scholar 

  34. van der Pol E, Boing AN, Harrison P et al (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705

    Article  PubMed  Google Scholar 

  35. Mullier F, Bailly N, Chatelain C et al (2013) Pre-analytical issues in the measurement of circulating microparticles: current recommendations and pending questions. J Thromb Haemost 11:693–696

    Article  CAS  PubMed  Google Scholar 

  36. Thery C, Amigorena S, Raposo G et al (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22

    PubMed  Google Scholar 

  37. Grant R, Ansa-Addo E, Stratton D et al (2011) A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. J Immunol Methods 371:143–151

    Article  CAS  PubMed  Google Scholar 

  38. Merchant ML, Powell DW, Wilkey DW et al (2010) Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl 4:84–96

    Article  CAS  PubMed  Google Scholar 

  39. Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    Article  CAS  PubMed  Google Scholar 

  40. Mathivanan S, Lim JW, Tauro BJ et al (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9:197–208

    Article  CAS  PubMed  Google Scholar 

  41. Balaj L, Atai NA, Chen W et al (2015) Heparin affinity purification of extracellular vesicles. Sci Rep 5:10266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rao S, Gefroh E, Kaltenbrunner O (2012) Recovery modeling of tangential flow systems. Biotechnol Bioeng 109:3084–3092

    Article  CAS  PubMed  Google Scholar 

  43. Petersen KE, Manangon E, Hood JL et al (2014) A review of exosome separation techniques and characterization of B16-F10 mouse melanoma exosomes with AF4-UV-MALS-DLS-TEM. Anal Bioanal Chem 406:7855–7866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee C, Mitsialis SA, Aslam M et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kordelas L, Rebmann V, Ludwig AK et al (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28:970–973

    CAS  PubMed  Google Scholar 

  46. Shin H, Han C, Labuz JM et al (2015) High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci Rep 5:13103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen C, Skog J, Hsu CH et al (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–511

    Article  CAS  PubMed  Google Scholar 

  48. Greening DW, Xu R, Ji H et al (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 1295:179–209

    Article  CAS  PubMed  Google Scholar 

  49. Whitehead RH, Jones JK, Gabriel A et al (1987) A new colon carcinoma cell line LIM1863 that Grows as organoids with spontaneous differentiation into crypt like structures in vitro.pdf> Cancer Res 47:2683–2689

    CAS  PubMed  Google Scholar 

  50. Schroder M, Schafer R, Friedl P (1997) Spectrophotometric determination of iodixanol in subcellular fractions of mammalian cells. Anal Biochem 244:174–176

    Article  CAS  PubMed  Google Scholar 

  51. Brosch M, Yu L, Hubbard T et al (2009) Accurate and sensitive peptide identification with Mascot Percolator. J Proteome Res 8:3176–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Greening DW, Kapp EA, Ji H et al (2013) Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment. Biochim Biophys Acta 1834:2396–2407

    Article  CAS  PubMed  Google Scholar 

  53. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4:1419–1440

    Article  CAS  PubMed  Google Scholar 

  54. Keller A, Nesvizhskii AI, Kolker E et al (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  PubMed  Google Scholar 

  55. Beissbarth T, Hyde L, Smyth GK et al (2004) Statistical modeling of sequencing errors in SAGE libraries. Bioinformatics 20(Suppl 1):i31–i39

    Article  CAS  PubMed  Google Scholar 

  56. Old WM, Meyer-Arendt K, Aveline-Wolf L et al (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  CAS  PubMed  Google Scholar 

  57. Colombo M, Moita C, van Niel G et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565

    Article  CAS  PubMed  Google Scholar 

  58. Muralidharan-Chari V, Clancy J, Plou C et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19:1875–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cantin R, Diou J, Belanger D et al (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338:21–30

    Article  CAS  PubMed  Google Scholar 

  60. Bard MP, Hegmans JP, Hemmes A et al (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31:114–121

    Article  CAS  PubMed  Google Scholar 

  61. Keller S, Ridinger J, Rupp AK et al (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Poliakov A, Spilman M, Dokland T et al (2009) Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69:159–167

    Article  PubMed  Google Scholar 

  63. van Balkom BW, Pisitkun T, Verhaar MC et al (2011) Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int 80:1138–1145

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lamparski HG, Metha-Damani A, Yao JY et al (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270:211–226

    Article  CAS  PubMed  Google Scholar 

  65. Maas SL, de Vrij J, van der Vlist EJ et al (2015) Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release 200:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Genneback N, Hellman U, Malm L et al (2013) Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracell Vesicles 2:PMCID: PMC3760655

    Article  Google Scholar 

  68. Kesimer M, Gupta R (2015) Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods 87:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sitar S, Kejzar A, Pahovnik D et al (2015) Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem 87:9225–9233

    Article  CAS  PubMed  Google Scholar 

  70. Gyorgy B, Modos K, Pallinger E et al (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117:e39–e48

    Article  CAS  PubMed  Google Scholar 

  71. Gardiner C, Ferreira YJ, Dragovic RA et al (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:PMCID: PMC3760643

    Article  Google Scholar 

  72. Bisaro B, Mandili G, Poli A et al (2015) Proteomic analysis of extracellular vesicles from medullospheres reveals a role for iron in the cancer progression of medulloblastoma. Mol Cell Ther 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jeppesen DK, Hvam ML, Primdahl-Bengtson B et al (2014) Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 3:25011

    Article  PubMed  Google Scholar 

  74. Dragovic RA, Gardiner C, Brooks AS et al (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7:780–788

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Asara JM, Christofk HR, Freimark LM et al (2008) A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8:994–999

    Article  CAS  PubMed  Google Scholar 

  76. Griffin NM, Yu J, Long F et al (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 28:83–89

    Article  CAS  PubMed  Google Scholar 

  77. Arike L, Peil L (2014) Spectral counting label-free proteomics. Methods Mol Biol 1156:213–222

    Article  CAS  PubMed  Google Scholar 

  78. Amorim M, Fernandes G, Oliveira P et al (2014) The overexpression of a single oncogene (ERBB2/HER2) alters the proteomic landscape of extracellular vesicles. Proteomics 14:1472–1479

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the La Trobe University Leadership RFA Grant (D.W.G, R.J.S), La Trobe Institute for Molecular Science Molecular Biology Fellowship (D.W.G), and La Trobe University Start-up Grant (D.W.G). RX is supported by La Trobe University Post Graduate Scholarship. We acknowledge the La Trobe University Comprehensive Proteomics Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Greening .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Xu, R., Simpson, R.J., Greening, D.W. (2017). A Protocol for Isolation and Proteomic Characterization of Distinct Extracellular Vesicle Subtypes by Sequential Centrifugal Ultrafiltration. In: Hill, A. (eds) Exosomes and Microvesicles. Methods in Molecular Biology, vol 1545. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6728-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6728-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6726-1

  • Online ISBN: 978-1-4939-6728-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics