Skip to main content

Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1545))

Abstract

Extracellular vesicles (EVs) are composed of microvesicles and exosomes. Exosomes are small membrane vesicles (40–120 nm sized) of endosomal origin released in the extracellular medium from cells when multivesicular bodies fuse with the plasma membrane, whereas microvesicles (i.e., shedding vesicles, 100 nm to 1 μm sized) bud from the plasma membrane. Exosomes and microvesicles carry functional proteins and nucleic acids (especially mRNAs and microRNAs) that can be transferred to surrounding cells and tissues and can impact multiple dimensions of the cellular life. Most of the cells, if not all, from neuronal to immune cells, release exosomes and microvesicles in the extracellular medium, and all biological fluids including blood (serum/plasma), urine, cerebrospinal fluid, and saliva contain EVs.

Prion-infected cultured cells are known to secrete infectivity into their environment. We characterized this cell-free form of prions and showed that infectivity was associated with exosomes. Since exosomes are produced by a variety of cells, including cells that actively accumulate prions, they could be a vehicle for infectivity in body fluids and could participate to the dissemination of prions in the organism. In addition, such infectious exosomes also represent a natural, simple, biological material to get key information on the abnormal PrP forms associated with infectivity.

In this chapter, we describe first a method that allows exosomes and microvesicles isolation from prion-infected cell cultures and in a second time the strategies to characterize the prions containing exosomes and their ability to disseminate the prion agent.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 3(1):28–37. doi:10.1007/s13238-012-2003-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37(11):460–465, doi:S0968-0004(12)00115-6 [pii] 10.1016/j.tibs.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  3. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688. doi:10.1007/s00018-011-0689-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12(12):1659–1668. doi:10.1111/j.1600-0854.2011.01225.x

    Article  CAS  PubMed  Google Scholar 

  5. Ludwig AK, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44(1):11–15. doi:10.1016/j.biocel.2011.10.005, S1357-2725(11)00267-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352(1):33–47. doi:10.1007/s00441-012-1428-2

    Article  CAS  PubMed  Google Scholar 

  7. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51. doi:10.1016/j.tcb.2008.11.003, S0962-8924(08)00283-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885. doi:10.1016/j.cub.2009.09.059, S0960-9822(09)01772-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q (2012) Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A 109(11):4146–4151. doi:10.1073/pnas.1200448109, 1200448109 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. doi:10.1083/jcb.201211138, jcb.201211138 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buschow SI, Nolte-'t Hoen EN, van Niel G, Pols MS, ten Broeke T, Lauwen M, Ossendorp F, Melief CJ, Raposo G, Wubbolts R, Wauben MH, Stoorvogel W (2009) MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10(10):1528–1542. doi:10.1111/j.1600-0854.2009.00963.x, TRA963 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4(4):222–231, doi:072 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE (2006) EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J 25(1):1–12. doi:10.1038/sj.emboj.7600759, 7600759 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Babst M (2005) A protein’s final ESCRT. Traffic 6(1):2–9. doi:10.1111/j.1600-0854.2004.00246.x, TRA246 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013:39p. doi:10.1242/jcs.128868, jcs.128868 [pii]

    Google Scholar 

  16. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91. doi:10.1016/j.devcel.2011.05.015, S1534-5807(11)00207-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247, doi:319/5867/1244 [pii] 10.1126/science.1153124

    Article  CAS  PubMed  Google Scholar 

  18. Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, Lopez-Martin S, Ursa A, Sanchez-Madrid F, Vazquez J, Yanez-Mo M (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 288(17):11649–11661. doi:10.1074/jbc.M112.445304, M112.445304 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721. doi:10.1016/j.devcel.2011.08.019, S1534-5807(11)00357-1 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, Chalmers RT, Webb DJ, Dear JW (2012) Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 10:5. doi:10.1186/1479-5876-10-5, 1479-5876-10-5 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 124(3-4):385–393. doi:10.1016/j.vetimm.2008.04.002, S0165-2427(08)00165-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978

    Article  CAS  PubMed  Google Scholar 

  23. Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, Sjostrand M, Gabrielsson S, Lotvall J, Valadi H (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9. doi:10.1186/1479-5876-9-9, 1479-5876-9-9 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16(1):34–38. doi:10.1111/j.1601-0825.2009.01604.x, ODI1604 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One 5(1), e8577. doi:10.1371/journal.pone.0008577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101(36):13368–13373. doi:10.1073/pnas.0403453101, 0403453101 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA (2009) Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69(2):159–167. doi:10.1002/pros.20860

    Article  PubMed  Google Scholar 

  28. Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, Scheynius A, Gabrielsson S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22(4):578–583

    Article  CAS  PubMed  Google Scholar 

  29. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360(9329):295–305. doi:10.1016/S0140-6736(02)09552-1, S0140-6736(02)09552-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, Witkin SS (2008) Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol 79(1):12–17. doi:10.1016/j.jri.2008.06.001, S0165-0378(08)00069-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Lasser C, O'Neil SE, Ekerljung L, Ekstrom K, Sjostrand M, Lotvall J (2011) RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy 25(2):89–93. doi:10.2500/ajra.2011.25.3573, 3573 [pii]

    Article  PubMed  Google Scholar 

  32. Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV, Radtke B, Splinter PL, LaRusso NF (2010) Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 299(4):G990–G999. doi:10.1152/ajpgi.00093.2010, ajpgi.00093.2010 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887. doi:10.1093/intimm/dxh267, dxh267 [pii]

    Article  CAS  PubMed  Google Scholar 

  34. Harding C, Heuser J, Stahl P (1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35(2):256–263

    CAS  PubMed  Google Scholar 

  35. Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948

    Article  CAS  PubMed  Google Scholar 

  36. Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F100 Biol Rep 3:15. doi:10.3410/B3-15

    Google Scholar 

  37. Simons M, Raposo G (2009) Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581. doi:10.1016/j.ceb.2009.03.007, S0955-0674(09)00077-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  38. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624. doi:10.1038/ncb1725, ncb1725 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856. doi:10.1038/sj.leu.2404132, 2404132 [pii]

    Article  CAS  PubMed  Google Scholar 

  40. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495. doi:10.1038/sj.leu.2404296, 2404296 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476. doi:10.1038/ncb1800, ncb1800 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi:10.1038/ncb1596, ncb1596 [pii]

    Article  CAS  PubMed  Google Scholar 

  43. Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, Del Turco D, Starmann J, Macas J, Karpova D, Devraj K, Depboylu C, Landfried B, Arnold B, Plate KH, Hoglinger G, Sultmann H, Altevogt P, Momma S (2014) Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 12(6), e1001874. doi:10.1371/journal.pbio.1001874, PBIOLOGY-D-14-00669 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soto C (2011) Prion hypothesis: the end of the controversy? Trends Biochem Sci 36(3):151–158. doi:10.1016/j.tibs.2010.11.001, S0968-0004(10)00210-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Aguzzi A, Heikenwalder M (2006) Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 4(10):765–775. doi:10.1038/nrmicro1492, nrmicro1492 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Castro-Seoane R, Hummerich H, Sweeting T, Tattum MH, Linehan JM, Fernandez de Marco M, Brandner S, Collinge J, Klohn PC (2012) Plasmacytoid dendritic cells sequester high prion titres at early stages of prion infection. PLoS Pathog 8(2), e1002538. doi:10.1371/journal.ppat.1002538, PPATHOGENS-D-11-00640 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klohn PC, Castro-Seoane R, Collinge J (2013) Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 67(5):359–368. doi:10.1016/j.jinf.2013.07.024, S0163-4453(13)00211-9 [pii]

    Article  PubMed  Google Scholar 

  49. Kujala P, Raymond CR, Romeijn M, Godsave SF, van Kasteren SI, Wille H, Prusiner SB, Mabbott NA, Peters PJ (2011) Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog 7(12), e1002449. doi:10.1371/journal.ppat.1002449, PPATHOGENS-D-11-01207 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanu N, Imokawa Y, Drechsel DN, Williamson RA, Birkett CR, Bostock CJ, Brockes JP (2002) Transfer of scrapie prion infectivity by cell contact in culture. Curr Biol 12(7):523–530, doi:S0960982202007224 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Paquet S, Langevin C, Chapuis J, Jackson GS, Laude H, Vilette D (2007) Efficient dissemination of prions through preferential transmission to nearby cells. J Gen Virol 88(Pt 2):706–713. doi:10.1099/vir.0.82336-0

  52. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi:10.1038/ncb1841, ncb1841 [pii]

    Article  CAS  PubMed  Google Scholar 

  53. Schatzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ, Weiner RI, Mobley WC, Prusiner SB (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71(11):8821–8831

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–615. doi:10.1042/BC20080025, BC20080025 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101(26):9683–9688. doi:10.1073/pnas.0308413101, 0308413101 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G, Darlix JL (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25(12):2674–2685. doi:10.1038/sj.emboj.7601162, 7601162 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arellano-Anaya ZE, Huor A, Leblanc P, Lehmann S, Provansal M, Raposo G, Andreoletti O, Vilette D (2015) Prion strains are differentially released through the exosomal pathway. Cell Mol Life Sci 72(6):1185–1196. doi:10.1007/s00018-014-1735-8

    Article  CAS  PubMed  Google Scholar 

  58. Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40(21):10937–10949. doi:10.1093/nar/gks832, gks832 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coleman BM, Hanssen E, Lawson VA, Hill AF (2012) Prion-infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J 26(10):4160–4173. doi:10.1096/fj.11-202077, fj.11-202077 [pii]

    Article  CAS  PubMed  Google Scholar 

  60. Conde-Vancells J, Rodriguez-Suarez E, Gonzalez E, Berisa A, Gil D, Embade N, Valle M, Luka Z, Elortza F, Wagner C, Lu SC, Mato JM, Falcon-Perez M (2010) Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. Proteomics Clin Appl 4(4):416–425. doi:10.1002/prca.200900103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648. doi:10.1016/j.mcn.2005.12.003, S1044-7431(05)00302-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Ritchie AJ, Crawford DM, Ferguson DJ, Burthem J, Roberts DJ (2013) Normal prion protein is expressed on exosomes isolated from human plasma. Br J Haematol 163(5):678–680. doi:10.1111/bjh.12543

    Article  CAS  PubMed  Google Scholar 

  63. Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A (2006) Cellular prion protein is released on exosomes from activated platelets. Blood 107(10):3907–3911. doi:10.1182/blood-2005-02-0802, 2005-02-0802 [pii]

    Article  CAS  PubMed  Google Scholar 

  64. Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5):582–590. doi:10.1002/path.2145

    Article  CAS  PubMed  Google Scholar 

  65. Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332. doi:10.1007/s00249-007-0246-z

    Article  CAS  PubMed  Google Scholar 

  66. Wang G, Zhou X, Bai Y, Zhang Z, Zhao D (2010) Cellular prion protein released on exosomes from macrophages binds to Hsp70. Acta Biochim Biophys Sin (Shanghai) 42(5):345–350

    Article  CAS  Google Scholar 

  67. Wang GH, Zhou XM, Bai Y, Yin XM, Yang LF, Zhao D (2011) Hsp70 binds to PrPC in the process of PrPC release via exosomes from THP-1 monocytes. Cell Biol Int 35(6):553–558. doi:10.1042/CBI20090391, CBI20090391 [pii]

    Article  CAS  PubMed  Google Scholar 

  68. Guo BB, Bellingham SA, Hill AF (2015) The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 290(6):3455–3467. doi:10.1074/jbc.M114.605253, M114.605253 [pii]

    Article  CAS  PubMed  Google Scholar 

  69. Vilette D, Laulagnier K, Huor A, Alais S, Simoes S, Maryse R, Provansal M, Lehmann S, Andreoletti O, Schaeffer L, Raposo G, Leblanc P (2015) Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 72(22):4409–4427. doi:10.1007/s00018-015-1945-8, 10.1007/s00018-015-1945-8

    Article  CAS  PubMed  Google Scholar 

  70. Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE (2015) The multivesicular body is the major internal site of prion conversion. J Cell Sci 128(7):1434–1443. doi:10.1242/jcs.165472, jcs.165472 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mattei V, Barenco MG, Tasciotti V, Garofalo T, Longo A, Boller K, Lower J, Misasi R, Montrasio F, Sorice M (2009) Paracrine diffusion of PrP(C) and propagation of prion infectivity by plasma membrane-derived microvesicles. PLoS One 4(4), e5057. doi:10.1371/journal.pone.0005057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chen B, Morales R, Barria MA, Soto C (2010) Estimating prion concentration in fluids and tissues by quantitative PMCA. Nat Methods 7(7):519–520. doi:10.1038/nmeth.1465, nmeth.1465 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Henderson DM, Davenport KA, Haley NJ, Denkers ND, Mathiason CK, Hoover EA (2015) Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J Gen Virol 96(Pt 1):210–219. doi:10.1099/vir.0.069906-0, vir.0.069906-0 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lacroux C, Simon S, Benestad SL, Maillet S, Mathey J, Lugan S, Corbiere F, Cassard H, Costes P, Bergonier D, Weisbecker JL, Moldal T, Simmons H, Lantier F, Feraudet-Tarisse C, Morel N, Schelcher F, Grassi J, Andreoletti O (2008) Prions in milk from ewes incubating natural scrapie. PLoS Pathog 4(12), e1000238. doi:10.1371/journal.ppat.1000238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Mason GL, Hays SA, Hayes-Klug J, Seelig DM, Wild MA, Wolfe LL, Spraker TR, Miller MW, Sigurdson CJ, Telling GC, Hoover EA (2006) Infectious prions in the saliva and blood of deer with chronic wasting disease. Science 314(5796):133–136, doi:314/5796/133 [pii] 10.1126/science.1132661

    Article  CAS  PubMed  Google Scholar 

  76. Moda F, Gambetti P, Notari S, Concha-Marambio L, Catania M, Park KW, Maderna E, Suardi S, Haik S, Brandel JP, Ironside J, Knight R, Tagliavini F, Soto C (2014) Prions in the urine of patients with variant Creutzfeldt-Jakob disease. N Engl J Med 371(6):530–539. doi:10.1056/NEJMoa1404401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Murayama Y, Masujin K, Imamura M, Ono F, Shibata H, Tobiume M, Yamamura T, Shimozaki N, Terao K, Yamakawa Y, Sata T (2014) Ultrasensitive detection of PrP(Sc) in the cerebrospinal fluid and blood of macaques infected with bovine spongiform encephalopathy prion. J Gen Virol 95(Pt 11):2576–2588. doi:10.1099/vir.0.066225-0, vir.0.066225-0 [pii]

    Article  PubMed  CAS  Google Scholar 

  78. Notari S, Qing L, Pocchiari M, Dagdanova A, Hatcher K, Dogterom A, Groisman JF, Lumholtz IB, Puopolo M, Lasmezas C, Chen SG, Kong Q, Gambetti P (2012) Assessing prion infectivity of human urine in sporadic Creutzfeldt-Jakob disease. Emerg Infect Dis 18(1):21–28. doi:10.3201/eid1801.110589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Orru CD, Groveman BR, Hughson AG, Zanusso G, Coulthart MB, Caughey B (2015) Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. MBio 6(1):pii e02451-14. doi:10.1128/mBio.02451-14

    Article  CAS  Google Scholar 

  80. Andreoletti O, Litaise C, Simmons H, Corbiere F, Lugan S, Costes P, Schelcher F, Vilette D, Grassi J, Lacroux C (2012) Highly efficient prion transmission by blood transfusion. PLoS Pathog 8(6), e1002782. doi:10.1371/journal.ppat.1002782, PPATHOGENS-D-11-02296 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brown P, Rohwer RG, Dunstan BC, MacAuley C, Gajdusek DC, Drohan WN (1998) The distribution of infectivity in blood components and plasma derivatives in experimental models of transmissible spongiform encephalopathy. Transfusion 38(9):810–816

    Article  CAS  PubMed  Google Scholar 

  82. Gregori L, Kovacs GG, Alexeeva I, Budka H, Rohwer RG (2008) Excretion of transmissible spongiform encephalopathy infectivity in urine. Emerg Infect Dis 14(9):1406–1412. doi:10.3201/eid1409.080259

    Article  PubMed  PubMed Central  Google Scholar 

  83. Haley NJ, Seelig DM, Zabel MD, Telling GC, Hoover EA (2009) Detection of CWD prions in urine and saliva of deer by transgenic mouse bioassay. PLoS One 4(3), e4848. doi:10.1371/journal.pone.0004848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Houston F, Foster JD, Chong A, Hunter N, Bostock CJ (2000) Transmission of BSE by blood transfusion in sheep. Lancet 356(9234):999–1000, doi:S0140673600027197 [pii]

    Article  CAS  PubMed  Google Scholar 

  85. Kariv-Inbal Z, Ben-Hur T, Grigoriadis NC, Engelstein R, Gabizon R (2006) Urine from scrapie-infected hamsters comprises low levels of prion infectivity. Neurodegener Dis 3(3):123–128. doi:10.1159/000094770, 94770 [pii]

    Article  CAS  PubMed  Google Scholar 

  86. Ligios C, Cancedda MG, Carta A, Santucciu C, Maestrale C, Demontis F, Saba M, Patta C, DeMartini JC, Aguzzi A, Sigurdson CJ (2011) Sheep with scrapie and mastitis transmit infectious prions through the milk. J Virol 85(2):1136–1139. doi:10.1128/JVI.02022-10, JVI.02022-10 [pii]

    Article  CAS  PubMed  Google Scholar 

  87. Wroe SJ, Pal S, Siddique D, Hyare H, Macfarlane R, Joiner S, Linehan JM, Brandner S, Wadsworth JD, Hewitt P, Collinge J (2006) Clinical presentation and pre-mortem diagnosis of variant Creutzfeldt-Jakob disease associated with blood transfusion: a case report. Lancet 368(9552):2061–2067. doi:10.1016/S0140-6736(06)69835-8, S0140-6736(06)69835-8 [pii]

    Article  PubMed  Google Scholar 

  88. Cervenakova L, Yakovleva O, McKenzie C, Kolchinsky S, McShane L, Drohan WN, Brown P (2003) Similar levels of infectivity in the blood of mice infected with human-derived vCJD and GSS strains of transmissible spongiform encephalopathy. Transfusion 43(12):1687–1694, doi:586 [pii]

    Article  PubMed  Google Scholar 

  89. Properzi F, Logozzi M, Abdel-Haq H, Federici C, Lugini L, Azzarito T, Cristofaro I, di Sevo D, Ferroni E, Cardone F, Venditti M, Colone M, Comoy E, Durand V, Fais S, Pocchiari M (2015) Detection of exosomal prions in blood by immunochemistry techniques. J Gen Virol 96(Pt 7):1969–1974. doi:10.1099/vir.0.000117, vir.0.000117 [pii]

    Article  CAS  PubMed  Google Scholar 

  90. Saa P, Yakovleva O, de Castro J, Vasilyeva I, De Paoli SH, Simak J, Cervenakova L (2014) First demonstration of transmissible spongiform encephalopathy-associated prion protein (PrPTSE) in extracellular vesicles from plasma of mice infected with mouse-adapted variant Creutzfeldt-Jakob disease by in vitro amplification. J Biol Chem 289(42):29247–29260. doi:10.1074/jbc.M114.589564, M114.589564 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11(4):301–307. doi:10.1038/nrm2873, nrm2873 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. doi:10.1038/nature12481, nature12481 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Renner M, Melki R (2014) Protein aggregation and prionopathies. Pathol Biol (Paris) 62(3):162–168. doi:10.1016/j.patbio.2014.01.003, S0369-8114(14)00033-9 [pii]

    Article  CAS  Google Scholar 

  94. Bendor JT, Logan TP, Edwards RH (2013) The function of alpha-synuclein. Neuron 79(6):1044–1066. doi:10.1016/j.neuron.2013.09.004, S0896-6273(13)00802-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  95. Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79(3):416–438. doi:10.1016/j.neuron.2013.07.033, S0896-6273(13)00657-0 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mallucci G (2013) Spreading proteins in neurodegeneration: where do they take us? Brain 136(Pt 4):994–995. doi:10.1093/brain/awt072, awt072 [pii]

    Article  PubMed  Google Scholar 

  97. Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37(12):1939–1948. doi:10.1111/ejn.12229

    Article  PubMed  Google Scholar 

  98. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H, Hasegawa M (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4(1):124–134. doi:10.1016/j.celrep.2013.06.007, S2211-1247(13)00285-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  99. Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer's disease patients. Proc Natl Acad Sci U S A 111(28):10323–10328. doi:10.1073/pnas.1408900111, 1408900111 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, Dearmond SJ, Prusiner SB (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110(48):19555–19560. doi:10.1073/pnas.1318268110, 1318268110 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K (2015) Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112(38):E5308–E5317. doi:10.1073/pnas.1514475112, 1514475112 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Basso M, Pozzi S, Tortarolo M, Fiordaliso F, Bisighini C, Pasetto L, Spaltro G, Lidonnici D, Gensano F, Battaglia E, Bendotti C, Bonetto V (2013) Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J Biol Chem 288(22):15699–15711. doi:10.1074/jbc.M112.425066, M112.425066 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. doi:10.1186/1750-1326-7-42, 1750-1326-7-42 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ding X, Ma M, Teng J, Teng RK, Zhou S, Yin J, Fonkem E, Huang JH, Wu E, Wang X (2015) Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 6(27):24178–24191, doi:4680 [pii] 10.18632/oncotarget.4680

    Article  PubMed  PubMed Central  Google Scholar 

  105. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851, doi:30/20/6838 [pii] 10.1523/JNEUROSCI.5699-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM, Li D, Thal DR, Walther P, Ludolph AC, Danzer KM, Weishaupt JH (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211(4):897–911. doi:10.1083/jcb.201504057, jcb.201504057 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gomes C, Keller S, Altevogt P, Costa J (2007) Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett 428(1):43–46. doi:10.1016/j.neulet.2007.09.024, S0304-3940(07)01005-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  108. Kunadt M, Eckermann K, Stuendl A, Gong J, Russo B, Strauss K, Rai S, Kugler S, Falomir Lockhart L, Schwalbe M, Krumova P, Oliveira LM, Bahr M, Mobius W, Levin J, Giese A, Kruse N, Mollenhauer B, Geiss-Friedlander R, Ludolph AC, Freischmidt A, Feiler MS, Danzer KM, Zweckstetter M, Jovin TM, Simons M, Weishaupt JH, Schneider A (2015) Extracellular vesicle sorting of alpha-Synuclein is regulated by sumoylation. Acta Neuropathol 129(5):695–713. doi:10.1007/s00401-015-1408-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103(30):11172–11177. doi:10.1073/pnas.0603838103, 0603838103 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22. doi:10.1002/0471143030.cb0322s30

    PubMed  Google Scholar 

  111. Vilette D (2008) Cell models of prion infection. Vet Res 39(4):10. doi:10.1051/vetres:2007049, v08023 [pii]

    Article  PubMed  CAS  Google Scholar 

  112. Bosque PJ, Prusiner SB (2000) Cultured cell sublines highly susceptible to prion infection. J Virol 74(9):4377–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, Hsiao KK, Kingsbury DT, Prusiner SB (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62(5):1558–1564

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Nishida N, Harris DA, Vilette D, Laude H, Frobert Y, Grassi J, Casanova D, Milhavet O, Lehmann S (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol 74(1):320–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vorberg I, Raines A, Story B, Priola SA (2004) Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J Infect Dis 189(3):431–439. doi:10.1086/381166, JID31043 [pii]

    Article  CAS  PubMed  Google Scholar 

  116. Arjona A, Simarro L, Islinger F, Nishida N, Manuelidis L (2004) Two Creutzfeldt-Jakob disease agents reproduce prion protein-independent identities in cell cultures. Proc Natl Acad Sci U S A 101(23):8768–8773. doi:10.1073/pnas.0400158101, 0400158101 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Archer F, Bachelin C, Andreoletti O, Besnard N, Perrot G, Langevin C, Le Dur A, Vilette D, Baron-Van Evercooren A, Vilotte JL, Laude H (2004) Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol 78(1):482–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S, Laude H (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98(7):4055–4059. doi:10.1073/pnas.061337998, 061337998 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vella LJ, Hill AF (2008) Generation of cell lines propagating infectious prions and the isolation and characterization of cell-derived exosomes. Methods Mol Biol 459:69–82. doi:10.1007/978-1-59745-234-2_5

    Article  CAS  PubMed  Google Scholar 

  120. Taraboulos A, Serban D, Prusiner SB (1990) Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J Cell Biol 110(6):2117–2132

    Article  CAS  PubMed  Google Scholar 

  121. Sajnani G, Silva CJ, Ramos A, Pastrana MA, Onisko BC, Erickson ML, Antaki EM, Dynin I, Vazquez-Fernandez E, Sigurdson CJ, Carter JM, Requena JR (2012) PK-sensitive PrP is infectious and shares basic structural features with PK-resistant PrP. PLoS Pathog 8(3), e1002547. doi:10.1371/journal.ppat.1002547, PPATHOGENS-D-11-01621 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Arellano-Anaya ZE, Savistchenko J, Mathey J, Huor A, Lacroux C, Andreoletti O, Vilette D (2011) A simple, versatile and sensitive cell-based assay for prions from various species. PLoS One 6(5), e20563. doi:10.1371/journal.pone.0020563, PONE-D-11-05514 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci U S A 100(20):11666–11671. doi:10.1073/pnas.1834432100, 1834432100 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pascal Leblanc or Didier Vilette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Leblanc, P. et al. (2017). Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission. In: Hill, A. (eds) Exosomes and Microvesicles. Methods in Molecular Biology, vol 1545. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6728-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6728-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6726-1

  • Online ISBN: 978-1-4939-6728-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics