Skip to main content

Manipulation of Strength of Cerebral Lateralization via Embryonic Light Stimulation in Birds

  • Protocol
  • First Online:
Book cover Lateralized Brain Functions

Part of the book series: Neuromethods ((NM,volume 122))

Abstract

Birds represent a particularly suitable model for cognitive neurosciences to study the prenatal factors at play in the establishment and modulation of brain lateralization. In pre-hatching stages, genetic factors determine the asymmetrical position of the embryo that in turn allows asymmetric environmental stimulation. In such tight gene–environment dialogue, genes promote the direction of asymmetries and environmental experience modulates the strength, or presence, of anatomical asymmetries and related cognitive specializations. Embryos of birds are easily accessible at all stages from fertilization to hatching due to development in eggs, and specific environmental effects (e.g., light-exposure) have been observed at the level of visual pathways and of related behaviors mediated by visual analysis.

Thanks to the nearly complete decussation of optic nerve fibers at the chiasma, the noninvasive temporary occlusion of one eye allows direct post-hatching investigation of single contralateral hemispheric processing to understand the effects of asymmetric prenatal manipulation. This chapter outlines the two main visual pathways of birds, their developmental timeline and the effects of light stimulation on the establishment and modulation of lateral biases. The detailed method of applying embryonic photostimulation in the domestic chick is provided and the relevance of the influence of environmental light exposure on the development of cerebral asymmetries in other species is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bateson P, Gluckman P (2011) Plasticity, robustness, development and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Lorenz KZ (1937) The companion in the bird’s world. Auk 54:245–273. doi:10.2307/4078077

    Article  Google Scholar 

  3. Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436. doi:10.1113/jphysiol.1970.sp009022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeanah CH, Egger HL, Smyke AT et al (2009) Institutional rearing and psychiatric disorders in Romanian preschool children. Am J Psychiatry 166:777–785. doi:10.1176/appi.ajp.2009.08091438

    Article  PubMed  Google Scholar 

  5. Kalcher-Sommersguter E, Preuschoft S, Franz-Schaider C et al (2015) Early maternal loss affects social integration of chimpanzees throughout their lifetime. Sci Rep 5:16439. doi:10.1038/srep16439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65:56–79. doi:10.1016/j.brainresrev.2010.06.002

    Article  PubMed  Google Scholar 

  7. Chan KP (2014) Prenatal meditation influences infant behaviors. Infant Behav Dev 37:556–561. doi:10.1016/j.infbeh.2014.06.011

    Article  PubMed  Google Scholar 

  8. Fride E, Weinstock M (1988) Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Sci 42:1059–1065

    Article  CAS  PubMed  Google Scholar 

  9. Schaafsma SM, Riedstra BJ, Pfannkuche KA et al (2009) Epigenesis of behavioural lateralization in humans and other animals. Philos Trans R Soc B Biol Sci 364:915–927. doi:10.1098/rstb.2008.0244

    Article  CAS  Google Scholar 

  10. Jozet-alves C, Hébert M (2013) Embryonic exposure to predator odour modulates visual lateralization in cuttlefish Embryonic exposure to predator odour modulates visual lateralization in cuttlefish. Proc R Soc B Biol Sci 280:20122575

    Article  Google Scholar 

  11. Rogers LJ (1982) Light experience and asymmetry of brain function in chickens. Nature 297:223–225. doi:10.1038/297223a0

    Article  CAS  PubMed  Google Scholar 

  12. Buschmann J-UF, Manns M, Güntürkün O (2006) “Let There be Light!” pigeon eggs are regularly exposed to light during breeding. Behav Processes 73:62–67. doi:10.1016/j.beproc.2006.03.012

    Article  PubMed  Google Scholar 

  13. Levin M, Johnson RL, Stern CD et al (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814. doi:10.1016/0092-8674(95)90477-8

    Article  CAS  PubMed  Google Scholar 

  14. Kovach JK (1970) Development and mechanisms of behavior in the chick embryo during the last five days of incubation. J Comp Physiol Psychol 73:392–406. doi:10.1037/h0030196

    Article  CAS  PubMed  Google Scholar 

  15. Rogers LJ (1990) Light input and the reversal of functional lateralization in the chicken brain. Behav Brain Res 38:211–221. doi:10.1016/0166-4328(90)90176-F

    Article  CAS  PubMed  Google Scholar 

  16. Rogers LJ (1997) Early experiential effects on laterality: research on chicks has relevance to other species. Laterality 2:199–219. doi:10.1080/135765097397440

    Article  CAS  PubMed  Google Scholar 

  17. Deng C, Rogers LJ (1998) Bilaterally projecting neurons in the two visual pathways of chicks. Brain Res 794:281–290. doi:10.1016/S0006-8993(98)00237-6

    Article  CAS  PubMed  Google Scholar 

  18. Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92. doi:10.1002/jmor.1050880104

    Article  CAS  PubMed  Google Scholar 

  19. Gottlieb G (1968) Prenatal behavior of birds. Q Rev Biol 43:148–174. doi:10.1086/405726

    Article  CAS  PubMed  Google Scholar 

  20. Rogers L (1995) The development of brain and behaviour in the chicken. CAB International, Wallingford

    Google Scholar 

  21. Rogers LJ, Andrew RJ (2002) Comparative vertebrate lateralization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Ehrlich D, Mark R (1984) Topography of primary visual centres in the brain of the chick, Gallus gallus. J Comp Neurol 223:611–625. doi:10.1002/cne.902230411

    Article  CAS  PubMed  Google Scholar 

  23. Andrew RJ (1991) Neural and behavioural plasticity: the use of the domestic chick as a model. Oxford Science, Oxford

    Book  Google Scholar 

  24. Letzner S, Simon A, Onur G (2016) Connectivity and neurochemistry of the commissura anterior of the pigeon (Columba livia). J Comp Neurol 524:343–361. doi:10.1002/cne.23858

    Article  CAS  PubMed  Google Scholar 

  25. Rogers LJ, Bolden SW (1991) Light-dependent development and asymmetry of visual projections. Neurosci Lett 121:63–67

    Article  CAS  PubMed  Google Scholar 

  26. Rogers LJ, Deng C (1999) Light experience and lateralization of the two visual pathways in the chick. Behav Brain Res 98:277–287. doi:10.1016/S0166-4328(98)00094-1

    Article  CAS  PubMed  Google Scholar 

  27. Koshiba M, Kikuchi T, Yohda M, Nakamura S (2002) Inversion of the anatomical lateralization of chick thalamofugal visual pathway by light experience. Neurosci Lett 318:113–116. doi:10.1016/S0304-3940(01)02306-0

    Article  CAS  PubMed  Google Scholar 

  28. Rajendra S, Rogers LJ (1993) Asymmetry is present in the thalamofugal visual projections of female chicks. Exp Brain Res 92:542–544. doi:10.1007/BF00229044

    Article  CAS  PubMed  Google Scholar 

  29. Ströckens F, Freund N, Manns M et al (2013) Visual asymmetries and the ascending thalamofugal pathway in pigeons. Brain Struct Funct 218:1197–1209. doi:10.1007/s00429-012-0454-x

    Article  PubMed  Google Scholar 

  30. Güntürkün O (1997) Morphological asymmetries of the tectum opticum in the pigeon. Exp Brain Res 116:561–566. doi:10.1007/PL00005785

    Article  PubMed  Google Scholar 

  31. Skiba M, Diekamp B, Güntürkün O (2002) Embryonic light stimulation induces different asymmetries in visuoperceptual and visuomotor pathways of pigeons. Behav Brain Res 134:149–156. doi:10.1016/S0166-4328(01)00463-6

    Article  PubMed  Google Scholar 

  32. Freund N, Güntürkün O, Manns M (2008) A morphological study of the nucleus subpretectalis of the pigeon. Brain Res Bull 75:491–493. doi:10.1016/j.brainresbull.2007.10.031

    Article  CAS  PubMed  Google Scholar 

  33. Rogers L, Sink H (1988) Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp Brain Res 70:378–384. doi:10.1007/BF00248362

    Article  CAS  PubMed  Google Scholar 

  34. Güntürkün O, Hellmann B, Melsbach G, Prior H (1998) Asymmetries of representation in the visual system of pigeons. Neuroreport 9:4127–4130

    Article  PubMed  Google Scholar 

  35. Valencia-Alfonso C-E, Verhaal J, Güntürkün O (2009) Ascending and descending mechanisms of visual lateralization in pigeons. Philos Trans R Soc Lond B Biol Sci 364:955–963. doi:10.1098/rstb.2008.0240

    Article  PubMed  Google Scholar 

  36. Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, Cambridge

    Book  Google Scholar 

  37. Rogers LJ (2008) Development and function of lateralization in the avian brain. Brain Res Bull 76:235–244. doi:10.1016/j.brainresbull.2008.02.001

    Article  PubMed  Google Scholar 

  38. Manns M, Güntürkün O (1999) Monocular deprivation alters the direction of functional and morphological asymmetries in the pigeon’s (Columba livia) visual system. Behav Neurosci 113:1257–1266

    Article  CAS  PubMed  Google Scholar 

  39. Manns M, Güntürkün O (1999) “Natural” and artificial monocular deprivation effects on thalamic soma sizes in pigeons. Neuroreport 10:3223–3228

    Article  CAS  PubMed  Google Scholar 

  40. Deng C, Rogers LJ (1997) Differential contributions of the two visual pathways to functional lateralization in chicks. Behav Brain Res 87:173–182. doi:10.1016/S0166-4328(97)02276-6

    Article  CAS  PubMed  Google Scholar 

  41. Deng C, Rogers LJ (2000) Organization of intratelencephalic projections to the visual Wulst of the chick. Brain Res 856:152–162. doi:10.1016/S0006-8993(99)02403-8

    Article  CAS  PubMed  Google Scholar 

  42. Rogers LJ, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. Proc R Soc B Biol Sci 271:S420–S422. doi:10.1098/rsbl.2004.0200

    Article  Google Scholar 

  43. Dharmaretnam M, Rogers LJ (2005) Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav Brain Res 162:62–70. doi:10.1016/j.bbr.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  44. Chiandetti C, Regolin L, Rogers LJ, Vallortigara G (2005) Effects of light stimulation of embryos on the use of position-specific and object-specific cues in binocular and monocular domestic chicks (Gallus gallus). Behav Brain Res 163:10–17. doi:10.1016/j.bbr.2005.03.024

    Article  PubMed  Google Scholar 

  45. Manns M, Römling J (2012) The impact of asymmetrical light input on cerebral hemispheric specialization and interhemispheric cooperation. Nat Commun 3:1–5. doi:10.1038/ncomms1699

    Article  Google Scholar 

  46. Chiandetti C (2011) Pseudoneglect and embryonic light stimulation in the avian brain. Behav Neurosci 125:775–782. doi:10.1037/a0024721

    Article  PubMed  Google Scholar 

  47. Freeman BM, Vince AM (1974) Development of the avian embryo. A behavioural and physiological study. Chapman & Hall, London

    Book  Google Scholar 

  48. Casey MB, Martino CM (2000) Asymmetrical hatching behaviors influence the development of postnatal laterality in domestic chicks (Gallus gallus). Dev Psychobiol 37:13–24. doi:10.1002/1098-2302(200007)

    Article  CAS  PubMed  Google Scholar 

  49. Sindhurakar A, Bradley NS (2010) Kinematic analysis of overground locomotion in chicks incubated under different light conditions. Dev Psychobiol 52:802–812. doi:10.1002/dev.20476

    Article  PubMed  Google Scholar 

  50. Casey MB, Karpinski S (1999) The development of postnatal turning bias is influenced by prenatal visual experience in domestic chicks (Gallus gallus). Psychol Rec 49:67–74

    Article  Google Scholar 

  51. Chiandetti C, Galliussi J, Andrew RJ, Vallortigara G (2013) Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci Rep 3:2701. doi:10.1038/srep02701

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tommasi L, Vallortigara G (1999) Footedness in binocular and monocular chicks. Laterality 4:89–95. doi:10.1080/135765099397132

    Article  CAS  PubMed  Google Scholar 

  53. Dharmaretnam M, Vijitha V, Priyadharshini K et al (2002) Ground scratching and preferred leg use in domestic chicks: changes in motor control in the first two. Laterality 7:371–380

    Article  PubMed  Google Scholar 

  54. Chiandetti C, Vallortigara G (2009) Effects of embryonic light stimulation on the ability to discriminate left from right in the domestic chick. Behav Brain Res 198:240–246. doi:10.1016/j.bbr.2008.11.018

    Article  PubMed  Google Scholar 

  55. Wichman A, Freire R, Rogers LJ (2009) Light exposure during incubation and social and vigilance behaviour of domestic chicks. Laterality 14:381–394. doi:10.1080/13576500802440616

    Article  PubMed  Google Scholar 

  56. Letzner S, Patzke N, Verhaal J, Manns M (2014) Shaping a lateralized brain: asymmetrical light experience modulates access to visual interhemispheric information in pigeons. Sci Rep 4:4253. doi:10.1038/srep04253

    Article  PubMed  PubMed Central  Google Scholar 

  57. Budaev S, Andrew RJ (2009) Patterns of early embryonic light exposure determine behavioural asymmetries in zebrafish: a habenular hypothesis. Behav Brain Res 200:91–94. doi:10.1016/j.bbr.2008.12.030

    Article  PubMed  Google Scholar 

  58. Budaev S, Andrew R (2009) Shyness and behavioural asymmetries in larval zebrafish (Brachydanio rerio) developed in light and dark. Behaviour 146:1037–1052. doi:10.1163/156853909X404448

    Article  Google Scholar 

  59. Andrew RJ, Osorio D, Budaev S (2009) Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick. Philos Trans R Soc Lond B Biol Sci 364:983–989. doi:10.1098/rstb.2008.0241

    Article  CAS  PubMed  Google Scholar 

  60. Kuan Y-S, Gamse JT, Schreiber AM, Halpern ME (2007) Selective asymmetry in a conserved forebrain to midbrain projection. J Exp Zool B Mol Dev Evol 308:669–678. doi:10.1002/jez.b.21184

    Article  PubMed  Google Scholar 

  61. de Borsetti NH, Dean BJ, Bain EJ et al (2011) Light and melatonin schedule neuronal differentiation in the habenular nuclei. Dev Biol 358:251–261. doi:10.1016/j.ydbio.2011.07.038

    Article  PubMed  PubMed Central  Google Scholar 

  62. Andrew RJ (2009) Origins of asymmetry in the CNS. Semin Cell Dev Biol 20:485–490. doi:10.1016/j.semcdb.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  63. Omura Y, Oguri M (1993) Early development of the pineal photoreceptors prior to the retinal differentiation in the embryonic rainbow trout, Oncorhynchus mykiss (Teleostei). Arch Histol Cytol 56:283–291. doi:10.1679/aohc.56.283

    Article  CAS  PubMed  Google Scholar 

  64. Ostholm T, Briinn E, Van Veen T (1987) The pineal organ is the first differentiated light receptor in the embryonic salmon, Salmo salar L. Cell Tissue Res 249:641–646. doi:10.1007/BF00217336

    Article  CAS  PubMed  Google Scholar 

  65. Rogers LJ (2014) Asymmetry of brain and behavior in animals: its development, function, and human relevance. Genesis 17:1–17. doi:10.1002/dvg.22741

    Google Scholar 

  66. Zappia JV, Rogers LJ (1983) Light experience during development affects asymmetry of forebrain function in chickens. Dev Brain Res 11:93–106. doi:10.1016/0165-3806(83)90204-3

    Article  Google Scholar 

  67. Dadda M, Bisazza A (2012) Prenatal light exposure affects development of behavioural lateralization in a livebearing fish. Behav Processes 91:115–118. doi:10.1016/j.beproc.2012.06.008

    Article  PubMed  Google Scholar 

  68. Jacques SL, Weaver DR, Reppert SM (1987) Penetration of light into the uterus of pregnant mammals. Photochem Photobiol 45:637–641. doi:10.1111/j.1751-1097.1987.tb07391.x

    Article  CAS  PubMed  Google Scholar 

  69. Rao S, Chun C, Fan J et al (2013) A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494:243–246. doi:10.1038/nature11823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Del Giudice M (2011) Alone in the dark? Modeling the conditions for visual experience in human fetuses. Dev Psychobiol 53:214–219. doi:10.1002/dev.20506

    Article  PubMed  Google Scholar 

  71. Tran US, Stieger S, Voracek M (2014) Latent variable analysis indicates that seasonal anisotropy accounts for the higher prevalence of left-handedness in men. Cortex 57:188–197. doi:10.1016/j.cortex.2014.04.011

    Article  PubMed  Google Scholar 

  72. Geschwind N, Galaburda AM (1985) Cerebral lateralization. Arch Neurol 42:634–654. doi:10.1001/archneur.1985.04060070024012

    Article  CAS  PubMed  Google Scholar 

  73. Previc FH (1991) A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol Rev 98:299–334. doi:10.1037/0033-295X.98.3.299

    Article  CAS  PubMed  Google Scholar 

  74. Rogers LJ, Krebs GA (1996) Exposure to different wavelengths of light and the development of structural and functional asymmetries in the chicken. Behav Brain Res 80:65–73. doi:10.1016/0166-4328(96)00021-6

    Article  CAS  PubMed  Google Scholar 

  75. Sovrano VA, Bertolucci C, Frigato E et al (2016) Influence of exposure in ovo to different light wavelengths on the lateralization of social response in zebrafish larvae. Physiol Behav 157:258–264

    Article  CAS  PubMed  Google Scholar 

  76. Osorio D, Vorobyev M, Jones CD (1999) Colour vision of domestic chicks. J Exp Biol 202:2951–2959

    CAS  PubMed  Google Scholar 

  77. Fleisch VC, Neuhauss SCF (2006) Visual behavior in zebrafish. Zebrafish 3:1–11. doi:10.1089/zeb.2006.3.191

    Article  Google Scholar 

  78. Dominoni D, Quetting M, Partecke J (2013) Artificial light at night advances avian reproductive physiology. Proc Biol Sci 280:20123017. doi:10.1098/rspb.2012.3017

    Article  PubMed  PubMed Central  Google Scholar 

  79. Siegel PB, Isakson ST, Coleman FN, Huffman BJ (1969) Photoacceleration of development in chick embryos. Comp Biochem Physiol 28:753–758. doi:10.1016/0010-406X(69)92108-2

    Article  Google Scholar 

  80. Sindhurakar A, Bradley NS (2012) Light accelerates morphogenesis and acquisition of interlimb stepping in chick embryos. PLoS One 7:1–14. doi:10.1371/journal.pone.0051348

    Article  Google Scholar 

  81. Porterfield JH, Sindhurakar A, Finley JM, Bradley NS (2015) Drift during overground locomotion in newly hatched chicks varies with light exposure during embryogenesis. Dev Psychobiol 57:459–469. doi:10.1002/dev.21306

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lauber JK, Shutze JV (1964) Accelerated growth of embryo chicks under the influence of light. Growth 28:179–190

    CAS  PubMed  Google Scholar 

  83. Zhang L, Zhang HJ, Wang J et al (2014) Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens. Animal 8:86–93. doi:10.1017/S1751731113001882

    Article  CAS  PubMed  Google Scholar 

  84. Pan J, Yang Y, Yang B, Yu Y (2014) Artificial polychromatic light affects growth and physiology in chicks. PLoS One 9:e113595. doi:10.1371/journal.pone.0113595

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Chiandetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chiandetti, C. (2017). Manipulation of Strength of Cerebral Lateralization via Embryonic Light Stimulation in Birds. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics