Skip to main content

Transcranial Magnetic Stimulation

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 122))

Abstract

Transcranial magnetic stimulation is a technique that allows the induction of electrical current in the superficial brain tissue, by means of a rapidly changing magnetic field. It is a noninvasive technique which may be safely applied to awake and collaborating humans. The biological effects of transcranial magnetic stimulation can be classified as immediate, consisting of action potentials, and delayed, consisting of variably lasting changes in the excitability of neurons, outlasting stimulation itself. Accordingly, the impact of TMS on behavior can be generally categorized as “online” or “offline.” TMS produces behavioral changes by manipulating the firing characteristics of neurons. As a consequence, TMS may be used to establish causal relationships between brain and behavior. The direct effects of TMS have a limited spatial distribution, in the order of 1–2 cm, thus making it an optimal tool for hemispheric localization of brain functions. TMS has been applied to the study of lateralization of brain functions in humans in multiple domains such as language, spatial attention, or executive functions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CSP:

Cortical silent period

DLPFC:

Dorsolateral prefrontal cortex

EEG:

Electroencephalography

EMG:

Electromyography

ICF:

Intracortical facilitation

ICI:

Intracortical inhibition

ISI:

Inter-stimulus interval

ISP:

Ipsilateral silent period

MEP:

Motor evoked potential

PAS:

Paired associative stimulation

rTMS:

Repetitive transcranial magnetic stimulation

TBS:

Theta-burst stimulation

TES:

Transcranial electrical stimulation

TMS:

Transcranial magnetic stimulation

References

  1. Fritsch GT, Hitzig E (1870) Ueber die elektrische Erregbarkeit des Grosshirns. In: Archiv für Anatomie, Physiologie und wissenschaftliche Medicin. G. Eichler, Berlin, pp 300–332

    Google Scholar 

  2. Cushing H (1909) A note upon the faradic stimulation of the post-central gyrus in conscious patients. Brain 32:44–53

    Article  Google Scholar 

  3. Foerster O (1936) Motorische Felder und Bahnen. In: Bumke H, Foerster O (eds) Handbuch der Neurologie IV. Springer, Berlin, pp 49–56

    Google Scholar 

  4. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  5. Marsden CD, Merton PA, Morton HB (1983) Direct electrical stimulation of corticospinal pathways through the intact scalp in human subjects. Adv Neurol 39:387–391

    CAS  PubMed  Google Scholar 

  6. Merton PA et al (1982) Scope of a technique for electrical stimulation of human brain, spinal cord, and muscle. Lancet 2(8298):597–600

    Article  CAS  PubMed  Google Scholar 

  7. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107

    Article  CAS  PubMed  Google Scholar 

  8. Miranda PC (2013) Physics of effects of transcranial brain stimulation. Handb Clin Neurol 116:353–366

    Article  PubMed  Google Scholar 

  9. Roth Y et al (2007) Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophysiol 24(1):31–38

    Article  PubMed  Google Scholar 

  10. Rudiak D, Marg E (1994) Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol 93(5):358–371

    Article  CAS  PubMed  Google Scholar 

  11. Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6(1):1–13

    Article  PubMed  Google Scholar 

  12. Basser PJ, Wijesinghe RS, Roth BJ (1992) The activating function for magnetic stimulation derived from a three-dimensional volume conductor model. IEEE Trans Biomed Eng 39(11):1207–1210

    Article  CAS  PubMed  Google Scholar 

  13. Basser PJ, Roth BJ (1991) Stimulation of a myelinated nerve axon by electromagnetic induction. Med Biol Eng Comput 29(3):261–268

    Article  CAS  PubMed  Google Scholar 

  14. Roth BJ, Basser PJ (1990) A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Trans Biomed Eng 37(6):588–597

    Article  CAS  PubMed  Google Scholar 

  15. Nagarajan SS, Durand DM, Warman EN (1993) Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Trans Biomed Eng 40(11):1175–1188

    Article  CAS  PubMed  Google Scholar 

  16. Silva S, Basser PJ, Miranda PC (2008) Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clin Neurophysiol 119(10):2405–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abdeen MA, Stuchly MA (1994) Modeling of magnetic field stimulation of bent neurons. IEEE Trans Biomed Eng 41(11):1092–1095

    Article  CAS  PubMed  Google Scholar 

  18. Ravazzani P et al (1996) Magnetic stimulation of the nervous system: induced electric field in unbounded, semi-infinite, spherical, and cylindrical media. Ann Biomed Eng 24(5):606–616

    Article  CAS  PubMed  Google Scholar 

  19. Ruohonen J, Ravazzani P, Grandori F (1995) An analytical model to predict the electric field and excitation zones due to magnetic stimulation of peripheral nerves. IEEE Trans Biomed Eng 42(2):158–161

    Article  CAS  PubMed  Google Scholar 

  20. Hsu KH, Durand DM (2000) Prediction of neural excitation during magnetic stimulation using passive cable models. IEEE Trans Biomed Eng 47(4):463–471

    Article  CAS  PubMed  Google Scholar 

  21. Hsu KH, Nagarajan SS, Durand DM (2003) Analysis of efficiency of magnetic stimulation. IEEE Trans Biomed Eng 50(11):1276–1285

    Article  PubMed  Google Scholar 

  22. Rotem A, Moses E (2006) Magnetic stimulation of curved nerves. IEEE Trans Biomed Eng 53(3):414–420

    Article  CAS  PubMed  Google Scholar 

  23. Salvador R et al (2011) Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clin Neurophysiol 122(4):748–758

    Article  CAS  PubMed  Google Scholar 

  24. Rotem A, Moses E (2008) Magnetic stimulation of one-dimensional neuronal cultures. Biophys J 94(12):5065–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pashut T et al (2014) Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation. Front Cell Neurosci 8:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Patton HD, Amassian VE (1954) Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17(4):345–363

    CAS  PubMed  Google Scholar 

  27. Rusu CV et al (2014) A model of TMS-induced I-waves in motor cortex. Brain Stimul 7(3):401–414

    Article  PubMed  Google Scholar 

  28. Moliadze V et al (2005) Paired-pulse transcranial magnetic stimulation protocol applied to visual cortex of anaesthetized cat: effects on visually evoked single-unit activity. J Physiol 566(Pt 3):955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moliadze V et al (2003) Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol 553(Pt 2):665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allen EA et al (2007) Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317(5846):1918–1921

    Article  CAS  PubMed  Google Scholar 

  31. Kozyrev V, Eysel UT, Jancke D (2014) Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci U S A 111(37):13553–13558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim T et al (2015) Transcranial magnetic stimulation changes response selectivity of neurons in the visual cortex. Brain Stimul 8(3):613–623

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meyer BU et al (1991) Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. Electroencephalogr Clin Neurophysiol Suppl 43:121–134

    CAS  PubMed  Google Scholar 

  34. Amassian VE et al (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74(6):458–462

    Article  CAS  PubMed  Google Scholar 

  35. Beckers G, Homberg V (1991) Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex. Exp Brain Res 87(2):421–432

    Article  CAS  PubMed  Google Scholar 

  36. Walsh V, Rushworth M (1999) A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia 37(2):125–135

    CAS  PubMed  Google Scholar 

  37. Ruzzoli M et al (2011) The effect of TMS on visual motion sensitivity: an increase in neural noise or a decrease in signal strength? J Neurophysiol 106(1):138–143

    Article  PubMed  Google Scholar 

  38. Harris JA, Clifford CW, Miniussi C (2008) The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? J Cogn Neurosci 20(4):734–740

    Article  PubMed  Google Scholar 

  39. Ruzzoli M, Marzi CA, Miniussi C (2010) The neural mechanisms of the effects of transcranial magnetic stimulation on perception. J Neurophysiol 103(6):2982–2989

    Article  PubMed  Google Scholar 

  40. Schwarzkopf DS, Silvanto J, Rees G (2011) Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. J Neurosci 31(9):3143–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perini F et al (2012) Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect. J Neurosci 32(36):12361–12365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miniussi C, Ruzzoli M, Walsh V (2010) The mechanism of transcranial magnetic stimulation in cognition. Cortex 46(1):128–130

    Article  PubMed  Google Scholar 

  43. Theoret H et al (2003) Exploring paradoxical functional facilitation with TMS. Suppl Clin Neurophysiol 56:211–219

    Article  PubMed  Google Scholar 

  44. Silvanto J, Pascual-Leone A (2008) State-dependency of transcranial magnetic stimulation. Brain Topogr 21(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  45. Abrahamyan A et al (2011) Improving visual sensitivity with subthreshold transcranial magnetic stimulation. J Neurosci 31(9):3290–3294

    Article  CAS  PubMed  Google Scholar 

  46. Rahnev DA et al (2012) Direct injection of noise to the visual cortex decreases accuracy but increases decision confidence. J Neurophysiol 107(6):1556–1563

    Article  PubMed  Google Scholar 

  47. Abrahamyan A et al (2015) Low intensity TMS enhances perception of visual stimuli. Brain Stimul 8(6):1175–1182

    Article  PubMed  Google Scholar 

  48. Mulckhuyse M et al (2011) Enhanced visual perception with occipital transcranial magnetic stimulation. Eur J Neurosci 34(8):1320–1325

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yozbatiran N et al (2009) Safety and behavioral effects of high-frequency repetitive transcranial magnetic stimulation in stroke. Stroke 40(1):309–312

    Article  PubMed  Google Scholar 

  50. Voss M et al (2007) An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex. Neuropsychologia 45(12):2712–2717

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nowak DA et al (2005) High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor cortex disturbs predictive grip force scaling. Eur J Neurosci 22(9):2392–2396

    Article  PubMed  Google Scholar 

  52. Mazzocchio R et al (1994) Effect of tonic voluntary activity on the excitability of human motor cortex. J Physiol 474(2):261–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baker SN, Olivier E, Lemon RN (1995) Task-related variation in corticospinal output evoked by transcranial magnetic stimulation in the macaque monkey. J Physiol 488(Pt 3):795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Massimini M et al (2005) Breakdown of cortical effective connectivity during sleep. Science 309(5744):2228–2232

    Article  CAS  PubMed  Google Scholar 

  55. Silvanto J et al (2008) Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. J Neurophysiol 99(5):2725–2730

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cattaneo Z et al (2008) Using state-dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. Eur J Neurosci 28(9):1924–1929

    Article  PubMed  Google Scholar 

  57. Silvanto J, Muggleton NG (2008) Testing the validity of the TMS state-dependency approach: targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+. Neuroimage 40(4):1841–1848

    Article  PubMed  Google Scholar 

  58. Cattaneo L, Sandrini M, Schwarzbach J (2010) State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cereb Cortex 20(9):2252–2258

    Article  PubMed  Google Scholar 

  59. Cattaneo L et al (2011) One’s motor performance predictably modulates the understanding of others’ actions through adaptation of premotor visuo-motor neurons. Soc Cogn Affect Neurosci 6(3):301–310

    Article  PubMed  Google Scholar 

  60. Jacquet PO, Avenanti A (2015) Perturbing the action observation network during perception and categorization of actions’ goals and grips: state-dependency and virtual lesion TMS effects. Cereb Cortex 25(3):598–608

    Article  PubMed  Google Scholar 

  61. Davare M et al (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45(9):1050–1057

    Article  PubMed  PubMed Central  Google Scholar 

  62. Baumer T et al (2009) Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest—a bifocal TMS study. Clin Neurophysiol 120(9):1724–1731

    Article  CAS  PubMed  Google Scholar 

  63. Koch G et al (2008) Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci 28(23):5944–5953

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cattaneo L, Barchiesi G (2011) Transcranial magnetic mapping of the short-latency modulations of corticospinal activity from the ipsilateral hemisphere during rest. Front Neural Circuits 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maule F et al (2015) Haptic working memory for grasping: the role of the parietal operculum. Cereb Cortex 25:528–537

    Article  PubMed  Google Scholar 

  66. Parmigiani S, Barchiesi G, Cattaneo L (2015) The dorsal premotor cortex exerts a powerful and specific inhibitory effect on the ipsilateral corticofacial system: a dual-coil transcranial magnetic stimulation study. Exp Brain Res 233(11):3253–3260

    Article  PubMed  Google Scholar 

  67. Ferbert A et al (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tokimura H et al (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523(Pt 2):503–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kujirai T et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee L et al (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23(12):5308–5318

    CAS  PubMed  Google Scholar 

  71. Gangitano M et al (2002) Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 113(8):1249–1257

    Article  PubMed  Google Scholar 

  72. Touge T et al (2001) Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112(11):2138–2145

    Article  CAS  PubMed  Google Scholar 

  73. Chen R et al (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48(5):1398–1403

    Article  CAS  PubMed  Google Scholar 

  74. Heide G, Witte OW, Ziemann U (2006) Physiology of modulation of motor cortex excitability by low-frequency suprathreshold repetitive transcranial magnetic stimulation. Exp Brain Res 171(1):26–34

    Article  CAS  PubMed  Google Scholar 

  75. Quartarone A et al (2005) Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex. Exp Brain Res 161(1):114–124

    Article  PubMed  Google Scholar 

  76. Pascual-Leone A et al (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(Pt 4):847–858

    Article  PubMed  Google Scholar 

  77. Maeda F et al (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133(4):425–430

    Article  CAS  PubMed  Google Scholar 

  78. Maeda F et al (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111(5):800–805

    Article  CAS  PubMed  Google Scholar 

  79. Peinemann A et al (2004) Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 115(7):1519–1526

    Article  PubMed  Google Scholar 

  80. Modugno N et al (2001) Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp Brain Res 140(4):453–459

    Article  CAS  PubMed  Google Scholar 

  81. Wu T et al (2000) Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci Lett 287(1):37–40

    Article  CAS  PubMed  Google Scholar 

  82. Di Lazzaro V et al (2005) Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J Physiol 565(Pt 3):945–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Huang YZ et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45(2):201–206

    Article  CAS  PubMed  Google Scholar 

  84. Stefan K et al (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3):572–584

    Article  PubMed  Google Scholar 

  85. Cattaneo L, Barchiesi G (2015) The auditory space in the motor system. Neuroscience 304:81–89

    Article  CAS  PubMed  Google Scholar 

  86. Avenanti A et al (2009) Freezing or escaping? Opposite modulations of empathic reactivity to the pain of others. Cortex 45(9):1072–1077

    Article  PubMed  Google Scholar 

  87. Glenberg AM et al (2008) Processing abstract language modulates motor system activity. Q J Exp Psychol (Hove) 61(6):905–919

    Article  Google Scholar 

  88. Barchiesi G, Cattaneo L (2013) Early and late motor responses to action observation. Soc Cogn Affect Neurosci 8(6):711–719

    Article  PubMed  Google Scholar 

  89. Cattaneo Z et al (2009) The mental number line modulates visual cortical excitability. Neurosci Lett 462(3):253–256

    Article  CAS  PubMed  Google Scholar 

  90. Bestmann S et al (2007) Spatial attention changes excitability of human visual cortex to direct stimulation. Curr Biol 17(2):134–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ubaldi S, Barchiesi G, Cattaneo L (2015) Bottom-up and top-down visuomotor responses to action observation. Cereb Cortex 25(4):1032–1041

    Article  PubMed  Google Scholar 

  92. Rossi S et al (2007) A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). Clin Neurophysiol 118(3):709–716

    Article  PubMed  Google Scholar 

  93. Okamoto M et al (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21(1):99–111

    Article  PubMed  Google Scholar 

  94. Okamoto M, Dan I (2005) Automated cortical projection of head-surface locations for transcranial functional brain mapping. Neuroimage 26(1):18–28

    Article  PubMed  Google Scholar 

  95. Mills KR, Kimiskidis V (1996) Cortical and spinal mechanisms of facilitation to brain stimulation. Muscle Nerve 19(8):953–958

    Article  CAS  PubMed  Google Scholar 

  96. Koski L et al (2005) Normative data on changes in transcranial magnetic stimulation measures over a ten hour period. Clin Neurophysiol 116(9):2099–2109

    Article  PubMed  Google Scholar 

  97. Badawy RA et al (2012) Inter-session repeatability of cortical excitability measurements in patients with epilepsy. Epilepsy Res 98(2–3):182–186

    Article  PubMed  Google Scholar 

  98. Kimiskidis VK et al (2004) The repeatability of corticomotor threshold measurements. Neurophysiol Clin 34(6):259–266

    Article  CAS  PubMed  Google Scholar 

  99. Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113(7):1165–1171

    Article  PubMed  Google Scholar 

  100. Conforto AB et al (2004) Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clin Neurophysiol 115(4):812–819

    Article  PubMed  Google Scholar 

  101. Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20(5):570–576

    Article  CAS  PubMed  Google Scholar 

  102. Hanajima R et al (2007) Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. Clin Neurophysiol 118(9):2120–2122

    Article  PubMed  Google Scholar 

  103. Rossini PM et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92

    Article  CAS  PubMed  Google Scholar 

  104. Rossini PM et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126(6):1071–1107

    Article  CAS  PubMed  Google Scholar 

  105. Stokes MG et al (2005) Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J Neurophysiol 94(6):4520–4527

    Article  PubMed  Google Scholar 

  106. Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108(1):1–16

    Article  CAS  PubMed  Google Scholar 

  107. Rossi S et al (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kayser S et al (2013) Comparable seizure characteristics in magnetic seizure therapy and electroconvulsive therapy for major depression. Eur Neuropsychopharmacol 23(11):1541–1550

    Article  CAS  PubMed  Google Scholar 

  109. Lisanby SH et al (2003) Safety and feasibility of magnetic seizure therapy (MST) in major depression: randomized within-subject comparison with electroconvulsive therapy. Neuropsychopharmacology 28(10):1852–1865

    Article  PubMed  Google Scholar 

  110. Fierro B et al (2001) Timing of right parietal and frontal cortex activity in visuo-spatial perception: a TMS study in normal individuals. Neuroreport 12(11):2605–2607

    Article  CAS  PubMed  Google Scholar 

  111. Bagattini C et al (2015) No causal effect of left hemisphere hyperactivity in the genesis of neglect-like behavior. Neuropsychologia 72:12–21

    Article  PubMed  Google Scholar 

  112. Bonni S et al (2015) Role of the anterior temporal lobes in semantic representations: paradoxical results of a cTBS study. Neuropsychologia 76:163–169

    Article  PubMed  Google Scholar 

  113. Gough PM, Nobre AC, Devlin JT (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci 25(35):8010–8016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Devlin JT, Matthews PM, Rushworth MF (2003) Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci 15(1):71–84

    Article  PubMed  Google Scholar 

  115. Cattaneo Z et al (2010) The causal role of category-specific neuronal representations in the left ventral premotor cortex (PMv) in semantic processing. Neuroimage 49(3):2728–2734

    Article  PubMed  Google Scholar 

  116. Pobric G, Hamilton AF (2006) Action understanding requires the left inferior frontal cortex. Curr Biol 16(5):524–529

    Article  CAS  PubMed  Google Scholar 

  117. Aziz-Zadeh L et al (2002) Lateralization in motor facilitation during action observation: a TMS study. Exp Brain Res 144(1):127–131

    Article  PubMed  Google Scholar 

  118. Urgesi C et al (2007) Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nat Neurosci 10(1):30–31

    Article  CAS  PubMed  Google Scholar 

  119. Aziz-Zadeh L et al (2005) Covert speech arrest induced by rTMS over both motor and nonmotor left hemisphere frontal sites. J Cogn Neurosci 17(6):928–938

    Article  PubMed  Google Scholar 

  120. Cattaneo L (2013) Language. Handb Clin Neurol 116:681–691

    Article  PubMed  Google Scholar 

  121. Rossi S et al (2006) Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. Eur J Neurosci 23(3):793–800

    Article  PubMed  Google Scholar 

  122. Kohler S et al (2004) Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study. J Cogn Neurosci 16(2):178–188

    Article  PubMed  Google Scholar 

  123. Innocenti I et al (2010) Event-related rTMS at encoding affects differently deep and shallow memory traces. Neuroimage 53(1):325–330

    Article  PubMed  Google Scholar 

  124. Broca P (1865) Sur le siège de la faculté du langage articulé. Bull Mém Soc Anthropol Paris 6(1):377–393

    Article  Google Scholar 

  125. Pascual-Leone A, Gates JR, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41(5):697–702

    Article  CAS  PubMed  Google Scholar 

  126. Epstein CM et al (1999) Localization and characterization of speech arrest during transcranial magnetic stimulation. Clin Neurophysiol 110(6):1073–1079

    Article  CAS  PubMed  Google Scholar 

  127. Epstein CM et al (1996) Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology 47(6):1590–1593

    Article  CAS  PubMed  Google Scholar 

  128. Epstein CM et al (2000) Repetitive transcranial magnetic stimulation does not replicate the Wada test. Neurology 55(7):1025–1027

    Article  CAS  PubMed  Google Scholar 

  129. Sidtis D, Canterucci G, Katsnelson D (2009) Effects of neurological damage on production of formulaic language. Clin Linguist Phon 23(4):270–284

    Article  PubMed  PubMed Central  Google Scholar 

  130. Stewart L et al (2001) Transcranial magnetic stimulation produces speech arrest but not song arrest. Ann N Y Acad Sci 930:433–435

    Article  CAS  PubMed  Google Scholar 

  131. Soares JC, Mann JJ (1997) The anatomy of mood disorders—review of structural neuroimaging studies. Biol Psychiatry 41(1):86–106

    Article  CAS  PubMed  Google Scholar 

  132. Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48(8):813–829

    Article  CAS  PubMed  Google Scholar 

  133. Carpenter LL et al (2012) Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice. Depress Anxiety 29(7):587–596

    Article  PubMed  Google Scholar 

  134. O'Reardon JP et al (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62(11):1208–1216

    Article  PubMed  Google Scholar 

  135. Janicak PG, Dokucu ME (2015) Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatr Dis Treat 11:1549–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen J et al (2013) Left versus right repetitive transcranial magnetic stimulation in treating major depression: a meta-analysis of randomised controlled trials. Psychiatry Res 210(3):1260–1264

    Article  PubMed  Google Scholar 

  137. Schutter DJ (2009) Antidepressant efficacy of high-frequency transcranial magnetic stimulation over the left dorsolateral prefrontal cortex in double-blind sham-controlled designs: a meta-analysis. Psychol Med 39(1):65–75

    Article  CAS  PubMed  Google Scholar 

  138. Haun DB et al (2010) Origins of spatial, temporal and numerical cognition: Insights from comparative psychology. Trends Cogn Sci 14(12):552–560

    Article  PubMed  Google Scholar 

  139. Pinel P et al (2001) Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage 14(5):1013–1026

    Article  CAS  PubMed  Google Scholar 

  140. Piazza M et al (2007) A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53(2):293–305

    Article  CAS  PubMed  Google Scholar 

  141. Gerstmann J (1940) Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia—local diagnostic value. Arch Neurol Psychiatry 44(2):398–408

    Article  Google Scholar 

  142. Dormal V, Andres M, Pesenti M (2008) Dissociation of numerosity and duration processing in the left intraparietal sulcus: a transcranial magnetic stimulation study. Cortex 44(4):462–469

    Article  PubMed  Google Scholar 

  143. Cappelletti M et al (2007) rTMS over the intraparietal sulcus disrupts numerosity processing. Exp Brain Res 179(4):631–642

    Article  PubMed  PubMed Central  Google Scholar 

  144. Knops A et al (2006) On the functional role of human parietal cortex in number processing: How gender mediates the impact of a ‘virtual lesion’ induced by rTMS. Neuropsychologia 44(12):2270–2283

    Article  PubMed  Google Scholar 

  145. Sandrini M, Rossini PM, Miniussi C (2004) The differential involvement of inferior parietal lobule in number comparison: a rTMS study. Neuropsychologia 42(14):1902–1909

    Article  PubMed  Google Scholar 

  146. Sasanguie D, Gobel SM, Reynvoet B (2013) Left parietal TMS disturbs priming between symbolic and non-symbolic number representations. Neuropsychologia 51(8):1528–1533

    Article  PubMed  Google Scholar 

  147. Gobel S, Walsh V, Rushworth MF (2001) The mental number line and the human angular gyrus. Neuroimage 14(6):1278–1289

    Article  CAS  PubMed  Google Scholar 

  148. Gobel SM et al (2006) Parietal rTMS distorts the mental number line: simulating ‘spatial’ neglect in healthy subjects. Neuropsychologia 44(6):860–868

    Article  PubMed  Google Scholar 

  149. Cohen Kadosh R et al (2007) Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Curr Biol 17(8):689–693

    Article  CAS  PubMed  Google Scholar 

  150. Cohen Kadosh R, Bien N, Sack AT (2012) Automatic and intentional number processing both rely on intact right parietal cortex: a combined FMRI and neuronavigated TMS study. Front Hum Neurosci 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  151. Andres M et al (2011) Role of distinct parietal areas in arithmetic: an fMRI-guided TMS study. Neuroimage 54(4):3048–3056

    Article  PubMed  Google Scholar 

  152. McCarthy G et al (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9(5):605–610

    Article  CAS  PubMed  Google Scholar 

  153. Damasio AR, Damasio H, Van Hoesen GW (1982) Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32(4):331–341

    Article  CAS  PubMed  Google Scholar 

  154. Ilmoniemi RJ et al (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8(16):3537–3540

    Article  CAS  PubMed  Google Scholar 

  155. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32(3):989–994

    Article  PubMed  Google Scholar 

  156. Wahl M et al (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27(45):12132–12138

    Article  CAS  PubMed  Google Scholar 

  157. Wassermann EM et al (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41(11):1795–1799

    Article  CAS  PubMed  Google Scholar 

  158. Giovannelli F et al (2009) Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol 587(Pt 22):5393–5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Meyer BU, Roricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43(3):360–369

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Cattaneo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cattaneo, L. (2017). Transcranial Magnetic Stimulation. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics