Skip to main content

VND6-induced Xylem Cell Differentiation in Arabidopsis Cell Cultures

  • Protocol
  • First Online:
Book cover Xylem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1544))

Abstract

In vitro xylem differentiation is a powerful technique that can be used to elucidate the process of xylem development that occurs deep inside plant tissues in nature. The experimental procedure described here is designed to induce metaxylem vessel differentiation at exceptionally high frequency and synchronicity using genetically engineered Arabidopsis cell suspensions. By triggering a transcriptional switch, over 80 % of the cells synchronously differentiate into xylem cells within 32 h of treatment with estradiol. Exogenous marker genes can be transiently introduced into the cells by coculturing them with transformed Agrobacterium before inducing xylem differentiation. This system is fast, easy to handle, and highly compatible with molecular and cell biology techniques used to explore xylem cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sawa S, Demura T, Horiguchi G, Kubo M, Fukuda H (2005) The ATE genes are responsible for repression of transdifferentiation into xylem cells in Arabidopsis. Plant Physiol 137:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kondo Y, Fujita T, Sugiyama M, Fukuda H (2015) A novel system for xylem cell differentiation in Arabidopsis thaliana. Mol Plant 8:612–621

    Article  CAS  PubMed  Google Scholar 

  5. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J et al (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pesquet E, Korolev AV, Calder G, Lloyd CW (2010) The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol 20:744–749

    Article  CAS  PubMed  Google Scholar 

  7. Ohashi-Ito K, Oda Y, Fukuda H (2010) Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22:3461–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oda Y, Iida Y, Kondo Y, Fukuda H (2010) Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr Biol 20:1197–1202

    Article  CAS  PubMed  Google Scholar 

  9. Yamaguchi M, Goue N, Igarashi H, Ohtani M, Nakano Y, Mortimer JC et al (2010) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol 153:906–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zuo J, Niu QW, Chua NH (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from MEXT KAKENHI (project no. 16H01247 and 15H01243), the JSPS KAKENHI (project no. 16H06172), and the Mitsubishi Foundation (to Y.O.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Oda, Y. (2017). VND6-induced Xylem Cell Differentiation in Arabidopsis Cell Cultures. In: de Lucas, M., Etchhells, J. (eds) Xylem. Methods in Molecular Biology, vol 1544. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6722-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6722-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6720-9

  • Online ISBN: 978-1-4939-6722-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics