Skip to main content

NanoCAGE: A Method for the Analysis of Coding and Noncoding 5′-Capped Transcriptomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1543))

Abstract

Transcripts in all eukaryotes are characterized by the 5′-end specific cap structure in mRNAs. Cap Analysis Gene Expression or CAGE makes use of these caps to specifically obtain cDNA fragments from the 5′-end of RNA and sequences those at high throughput for transcript identification and genome-wide mapping of transcription start sites for coding and noncoding genes. Here, we provide an improved version of our nanoCAGE protocol that has been developed for preparing CAGE libraries from as little as 50 ng of total RNA within three standard working days. Key steps in library preparation have been improved over our previously published protocol to obtain libraries having a good 5′-end selection and a more equal size distribution for higher sequencing efficiency on Illumina MiSeq and HiSeq sequencers. We recommend nanoCAGE as the method of choice for transcriptome profiling projects even from limited amounts of RNA, and as the best approach for genome-wide mapping of transcription start sites within promoter regions.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6716-2_17

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-6716-2_17

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shiraki T, Kondo S, Katayama S et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA 100:15776–15781. doi:10.1073/pnas.2136655100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2:495–502. doi:10.1038/nmeth768

    Article  CAS  PubMed  Google Scholar 

  3. Kodzius R, Kojima M, Nishiyori H et al (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    Article  CAS  PubMed  Google Scholar 

  4. Carninci P, Nishiyama Y, Westover A et al (1998) Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. Proc Natl Acad Sci USA 95:520–524. doi:10.1073/pnas.95.2.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carninci P, Shiraki T, Mizuno Y et al (2002) Extra-long first-strand cDNA synthesis. Biotechniques 32:984–985

    CAS  PubMed  Google Scholar 

  6. Spiess A-N, Ivell R (2002) A highly efficient method for long-chain cDNA synthesis using trehalose and betaine. Anal Biochem 301:168–174. doi:10.1006/abio.2001.5474

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki H, Forrest ARR, Nimwegen E et al (2009) The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41:553–562. doi:10.1038/ng.375

    Article  CAS  PubMed  Google Scholar 

  8. Balwierz PJ, Pachkov M, Arnold P et al (2014) ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res 24:869–884. doi:10.1101/gr.169508.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461. doi:10.1038/nature12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kellis M, Wold B, Snyder MP et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA 111:6131–6138. doi:10.1073/pnas.1318948111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Plessy C, Bertin N, Takahashi H et al (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534. doi:10.1038/nmeth.1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kratz A, Beguin P, Kaneko M et al (2014) Digital expression profiling of the compartmentalized translatome of Purkinje neurons. Genome Res 24:1396–1410. doi:10.1101/gr.164095.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klerk E, Dunnen JT, ‘t Hoen PAC (2014) RNA sequencing: from tag-based profiling to resolving complete transcript structure. Cell Mol Life Sci 71:3537–3551. doi:10.1007/s00018-014-1637-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klerk E, ‘t Hoen PAC (2015) Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 31:128–139. doi:10.1016/j.tig.2015.01.001

    Article  PubMed  Google Scholar 

  15. Harbers M, Kahl G (eds) (2012) Tag-based next generation sequencing. Wiley-VCH, Weinheim

    Google Scholar 

  16. Carninci P, Kvam C, Kitamura A et al (1996) High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37:327–336. doi:10.1006/geno.1996.0567

    Article  CAS  PubMed  Google Scholar 

  17. https://en.wikipedia.org/wiki/Cap_analysis_gene_expression

  18. Salimullah M, Mizuho S, Plessy C, Carninci P (2011) NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5559

    PubMed  PubMed Central  Google Scholar 

  19. Hirzmann J, Luo D, Hahnen J, Hobom G (1993) Determination of messenger RNA 5′-ends by reverse transcription of the cap structure. Nucleic Acids Res 21:3597–3598. doi:10.1093/nar/21.15.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohtake H, Ohtoko K, Ishimaru Y, Kato S (2004) Determination of the capped site sequence of mRNA based on the detection of cap-dependent nucleotide addition using an anchor ligation method. DNA Res 11:305–309. doi:10.1093/dnares/11.4.305

    Article  CAS  PubMed  Google Scholar 

  21. Lavie L, Maldener E, Brouha B et al (2004) The human L1 promoter: Variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res 14:2253–2260. doi:10.1101/gr.2745804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kulpa D, Topping R, Telesnitsky A (1997) Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 16:856–865. doi:10.1093/emboj/16.4.856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166. doi:10.1038/nmeth.2772

    Article  CAS  PubMed  Google Scholar 

  24. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915. doi:10.1038/nsmb.1838

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kivioja T, Vähärautio A, Karlsson K et al (2011) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9:72–74. doi:10.1038/nmeth.1778

    Article  PubMed  Google Scholar 

  26. Fejes-Toth K, Sotirova V, Sachidanandam R et al (2009) Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457:1028–1032. doi:10.1038/nature07759

    Article  CAS  PubMed Central  Google Scholar 

  27. Yan B, Ma J (2012) Promoter-associated RNAs and promoter-targeted RNAs. Cell Mol Life Sci 69:2833–2842. doi:10.1007/s00018-012-0953-1

    Article  CAS  PubMed  Google Scholar 

  28. Tang DTP, Plessy C, Salimullah M et al (2013) Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. Nucleic Acids Res. doi:10.1093/nar/gks1128

    Google Scholar 

  29. Imbeaud S, Graudens E, Boulanger V et al (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 33:1–12. doi:10.1093/nar/gni054

    Article  Google Scholar 

  30. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. doi:10.1186/1471-2199-7-3

  31. Rio DC (2015) Denaturation and electrophoresis of RNA with formaldehyde. Cold Spring Harb Protoc 2015:219–222. doi:10.1101/pdb.prot080994

    PubMed  Google Scholar 

  32. Mansour FH, Pestov DG (2013) Separation of long RNA by agarose-formaldehyde gel electrophoresis. Anal Biochem 441:18–20. doi:10.1016/j.ab.2013.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khamis AM, Hamilton AR, Medvedeva YA et al (2015) Insights into the transcriptional architecture of behavioral plasticity in the honey bee Apis mellifera. Sci Rep 5:11136. doi:10.1038/srep11136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cumbie JS, Ivanchenko MG, Megraw M (2015) NanoCAGE-XL and CapFilter: an approach to genome wide identification of high confidence transcription start sites. BMC Genomics 16:597. doi:10.1186/s12864-015-1670-6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lassmann T (2015) TagDust2: a generic method to extract reads from sequencing data. BMC Bioinformatics 16:24. doi:10.1186/s12859-015-0454-y

    Article  PubMed  PubMed Central  Google Scholar 

  36. Severin J, Lizio M, Harshbarger J et al (2014) Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat Biotechnol 32:217–219. doi:10.1038/nbt.2840

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Alexandre Fort for critically reading the manuscript and his helpful comments, and Laia Masvidal Sanz for helpful discussions and suggestions on the nanoCAGE protocol. This work was founded by a Research Grant from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) to the RIKEN Center for Life Science Technologies, and a JSPS Grant-in-Aid for Young Scientists A (number 25710018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles Plessy or Matthias Harbers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Poulain, S. et al. (2017). NanoCAGE: A Method for the Analysis of Coding and Noncoding 5′-Capped Transcriptomes. In: Napoli, S. (eds) Promoter Associated RNA. Methods in Molecular Biology, vol 1543. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6716-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6716-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6714-8

  • Online ISBN: 978-1-4939-6716-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics