Skip to main content

Identification of Candidate Functional Elements in the Genome from ChIP-seq Data

  • Protocol
  • First Online:
Promoter Associated RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1543))

Abstract

ChIP-seq datasets provide a wealth of information for the identification of candidate regulatory elements in the genome. For this potential to be fully realized, methods for evaluating data quality and for distinguishing reproducible signal from technical and biological noise are necessary. Here, the computational methods for addressing these challenges developed by the ENCODE Consortium are described and the key considerations for analyzing and interpreting ChIP-seq data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shyh-Chang N, Daley GQ (2013) Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell 12:395–406

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  3. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  PubMed  Google Scholar 

  4. Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  CAS  PubMed  Google Scholar 

  6. Landt SG, Marinov GK, Kundaje A et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marinov GK, Kundaje A, Park PJ et al (2014) Large-scale quality analysis of published ChIP-seq data. G3 (Bethesda) 4:209–223

    Article  Google Scholar 

  8. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  9. Gerstein MB, Kundaje A, Hariharan M et al (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerstein MB, Lu ZJ, Van Nostrand EL et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. modENCODE Consortium (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–1797

    Article  Google Scholar 

  12. The Mouse ENCODE Consortium (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355–364

    Article  Google Scholar 

  13. Negre N, Brown CD, Ma L et al (2011) A cis-regulatory map of the Drosophila genome. Nature 471:527–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Q, Brown J, Huang H et al (2011) Measuring reproducibility of high-throughput experiments. Ann Appl Stat 5:1752–1779

    Article  Google Scholar 

  15. Carroll TS, Liang Z, Salama R, Stark R, de Santiago I (2014) Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front Genet 5:75

    Article  PubMed  PubMed Central  Google Scholar 

  16. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  17. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H L, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  19. Daley T, Smith AD (2013) Predicting the molecular complexity of sequencing libraries. Nat Methods 10:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng J, Liu T, Qin B et al (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7:1728–1740

    Article  CAS  PubMed  Google Scholar 

  21. Kuhn RM, Haussler D, Kent WJ (2013) The UCSC genome browser and associated tools. Brief Bioinform 14:144–161

    Article  CAS  PubMed  Google Scholar 

  22. Kent WJ, Zweig AS, Barber G et al (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26:2204–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178

    Article  CAS  PubMed  Google Scholar 

  24. Kellis M, Hardison RC, Wold BJ et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A 111:6131–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raney BJ, Dreszer TR, Barber GP et al (2014) Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 30:1003–1005

    Article  CAS  PubMed  Google Scholar 

  26. Koehler R, Issac H, Cloonan N, Grimmond SM (2011) The uniqueome: a mappability resource for short-tag sequencing. Bioinformatics 27:272–274

    Article  CAS  PubMed  Google Scholar 

  27. Lee H, Schatz MC (2012) Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score. Bioinformatics 28:2097–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Derrien T, Estell´e J, Marco Sola S et al (2012) Fast computation and applications of genome mappability. PLoS One 7:e30377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rozowsky J, Euskirchen G, Auerbach R et al (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27:66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo Y, Mahony S, Gifford DK (2012) High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput Biol 8:e1002638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Church DM, Schneider VA, Steinberg KM et al (2015) Extending reference assembly models. Genome Biol 16:13

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Anshul Kundaje, members of the Barbara Wold and Richard Myers labs and of the ENCODE Consortium for many helpful discussions, and Gilberto DeSalvo and Matthew D. Smalley for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi K. Marinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Marinov, G.K. (2017). Identification of Candidate Functional Elements in the Genome from ChIP-seq Data. In: Napoli, S. (eds) Promoter Associated RNA. Methods in Molecular Biology, vol 1543. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6716-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6716-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6714-8

  • Online ISBN: 978-1-4939-6716-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics