Skip to main content

Fusarium Species and Their Associated Mycotoxins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1542))

Abstract

The genus Fusarium includes numerous toxigenic species that are pathogenic to plants or humans, and are able to colonize a wide range of environments on earth. The genus comprises around 70 well-known species, identified by using a polyphasic approach, and as many as 300 putative species, according to phylogenetic species concepts; many putative species do not yet have formal names.

Fusarium is one of the most economically important fungal genera because of yield loss due to plant pathogenic activity; mycotoxin contamination of food and feed products which often render them unaccep for marketing; and health impacts to humans and livestock, due to consumption of mycotoxins. Among the most important mycotoxins produced by species of Fusarium are the trichothecenes and the fumonisins. Fumonisins cause fatal livestock diseases and are considered potentially carcinogenic mycotoxins for humans, while trichothecenes are potent inhibitors of protein synthesis. This chapter summarizes the main aspects of morphology, pathology, and toxigenicity of the main Fusarium species that colonize different agricultural crops and environments worldwide, and cause mycotoxin contamination of food and feed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics, and biology. APS Press, St Paul, MN, 260 pp

    Google Scholar 

  2. Marasas WFO, Nelson PE, Toussoun TA (1984) Toxigenic Fusarium species: Identity and mycotoxicology. Pennsylvania State University Press, University Park, PA, 328 pp

    Google Scholar 

  3. Munkvold GP (2003) Mycotoxins in corn—occurrence, impact, and management Ch. 23 (pp. 811–881). In: White PJ, Johnson LA (eds) Corn: chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, MN, 892 pp

    Google Scholar 

  4. European Food Safety Authority (2013) Deoxynivalenol in food and feed: occurrence and exposure. EFSA J 11(10):3379. doi:10.2903/j.efsa.2013.3379, 56 pp

    Article  CAS  Google Scholar 

  5. Waskiewicz A, Beszterda M, Golinski P (2012) Occurrence of fumonisins in food—an interdisciplinary approach to the problem. Food Control 26(2):491–499

    Article  CAS  Google Scholar 

  6. Wu F, Munkvold GP (2008) Mycotoxins in ethanol co-products: modeling economic impacts on the livestock industry and management strategies. J Agric Food Chem 56(11):3900–3911

    Article  CAS  PubMed  Google Scholar 

  7. Logrieco AF, Haidukowski M, Susca A, Mule G, Munkvold GP, Moretti A (2014) Aspergillus section Nigri as contributor of Fumonisin B2 contamination in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(1):149–155

    Article  CAS  PubMed  Google Scholar 

  8. Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    Article  CAS  PubMed  Google Scholar 

  9. Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG, Marshall M, Kanzan K et al (2012) Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 8(9):e1002952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lysoe E, Harris LJ, Walkowiak S, Subramaniam R, Divon HH, Riiser ES, Llorens C et al (2014) The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One 9(11):e112703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wiemann P, Sieber CMK, Von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huss K et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9(6):e1003475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeong HY, Lee SH, Choi GJ, Lee T, Yun SH, Jeong HY, Lee SH, Choi GJ, Yun SH (2013) Draft genome sequence of Fusarium fujikuroi B14, the causal agent of the bakanae disease of rice. Genome Announc 1(1):e00035-13

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Pietro AD, Dufresne M et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y et al (2014) Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS One 9(4):e95543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J et al (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5(8):e1000618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Srivastava SK, Huang X, Brar HK, Fakhoury AM, Bluhm BH, Bhattacharyya MK (2014) The genome sequence of the fungal pathogen Fusarium virguliforme that causes sudden death syndrome in soybean. PLoS One 9:e81832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK, Brandt ME, Brown DW et al (2013) One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103(5):400–408

    Article  PubMed  Google Scholar 

  18. O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Ward TJ, Frandsen RJN et al (2013) Phylogenetic analyses of Rpb1 and Rpb2 strongly support a middle cretaceous origin for a clade comprising all agriculturally and medically important Fusaria. Fungal Genet Biol 52:20–31

    Article  PubMed  CAS  Google Scholar 

  19. O’Donnell K, Sutton DA, Rinaldi MG, Gueidan C, Crous PW, Geiser DM (2009) Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the United States. J Clin Microbiol 47(12):3851–3861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Link HF (1809) Observationes in ordines plantarum naturals. Mag Ges Naturf Freunde 3:3–42

    Google Scholar 

  21. Wollenweber HW, Reinking OA (1935) Die Fusarien, ihre Beschreibung, Schadwirkung, und Bekämpfung. Paul Parey, Berlin

    Google Scholar 

  22. Snyder WC, Hansen HN (1940) The species concept in Fusarium. Am J Bot 27(2):64–67

    Article  Google Scholar 

  23. Snyder WC, Hansen HN (1941) The species concept in Fusarium with reference to Martiella. Am J Bot 28(9):738–742

    Article  Google Scholar 

  24. Snyder WC, Hansen HN (1945) The species concept in Fusarium with reference to Discolor and other sections. Am J Bot 32(10):657–666

    Article  Google Scholar 

  25. Gordon WL (1952) The occurrence of Fusarium species in Canada. 2. prevalence and taxonomy of Fusarium species in cereal seed. Can J Bot 30(2):209–251

    Article  Google Scholar 

  26. Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey

    Google Scholar 

  27. Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification (University Park. Penn State University Press, Pennsylvania

    Google Scholar 

  28. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell, Ames, Iowa

    Book  Google Scholar 

  29. Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80(3):189–201

    Article  CAS  Google Scholar 

  30. Desjardins AE (2003) Gibberella from A (venaceae) to Z (eae). Annu Rev Phytopathol 41:177–198

    Article  CAS  PubMed  Google Scholar 

  31. Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. Mycokeys 1:7–20

    Article  Google Scholar 

  32. Nelson PE, Toussoun TA, Cook RJ (1981) Fusarium: diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, Pennsylvania

    Google Scholar 

  33. Covey PA, Kuwitzky B, Hanson M, Webb KM (2014) Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from sugar beet. Phytopathology 104(8):886–896

    CAS  PubMed  Google Scholar 

  34. WHO. Food Additives Series no. 47. (2001) Safety evaluation of certain mycotoxins in food. FAO Food and Nutrition Paper, 74, 701 pp

    Google Scholar 

  35. WHO (2002) Evaluation of certain mycotoxins in food: fifty-sixth report of the joint FAO/WHO expert committee on food additives. WHO Technical Report Series, 906, 62 pp

    Google Scholar 

  36. NTP (2001) Technical report on the toxicology and carcinogenesis studies of fumonisin B1 (CAS NO. 116355-83-0) in F344/N Rats AND B6C3F1 MICE (Feed Studies). NTP TR 496. (U.S. Dept. of Health and Human Services, NIH Publication No. 01-3955)

    Google Scholar 

  37. Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215

    Article  CAS  Google Scholar 

  38. Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71(9):2105–2123

    Article  CAS  PubMed  Google Scholar 

  39. McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes: from simple to complex mycotoxins. Toxins 3(7):802–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woloshuk CP, Shim WB (2013) Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiol Rev 37(1):94–109

    Article  CAS  PubMed  Google Scholar 

  41. Proctor RH, Van Hove F, Susca A, Stea G, Busman M, van der Lee T, Waalwijk C, Moretti A, Ward TJ (2013) Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol 90(2):290–306

    CAS  PubMed  Google Scholar 

  42. Foroud NA, Eudes F (2009) Tricothecenes in cereal grains. Int J Mol Sci 10(1):147–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sydenham EW, Shephard GS, Thiel PG, Marasas WFO, Stockenstrom S (1991) Fumonisin contamination of commercial corn-based human foodstuffs. J Agric Food Chem 39(11):2014–2018

    Article  CAS  Google Scholar 

  44. Rodrigues I, Handl J, Binder EM (2011) Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the Middle East and Africa. Food Addit Contam Part B Surveill 4(3):168–179. doi:10.1080/19393210.2011.589034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schatzmayr G, Streit E (2013) Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin J 6(3):213–222

    Article  CAS  Google Scholar 

  46. Wood GE (1992) Mycotoxins in foods and feeds in the United States. J Anim Sci 70(12):3941–3949

    Article  CAS  PubMed  Google Scholar 

  47. Griessler K, Rodrigues I, Handl J, Hofstetter U (2010) Occurrence of mycotoxins in Southern Europe. World Mycotoxin J 3(3):301–309

    Article  CAS  Google Scholar 

  48. SCF (Scientific Committee for Food). Opinion of the scientific committee for food on Fusarium toxins. Part 6: Group evaluation of T-2 toxin, HT-2 Toxin, nivalenol and deoxynivalenol. http://ec.europa.eu/food/fs/sc/scf/out123_en.pdf.

  49. EFSA Panel on Contaminants in the Food Chain (2011) Scientific opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J 9(12):2481. doi:10.2903/j.efsa.2011.2481

    Article  CAS  Google Scholar 

  50. Jestoi M (2008) Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—a review. Crit Rev Food Sci Nutr 48(1):21–49

    Article  CAS  PubMed  Google Scholar 

  51. Logrieco A, Moretti A, Castella G, Kostecki M, Golinski P, Ritieni A, Chelkowski J (1998) Beauvericin production by Fusarium species. Appl Environ Microbiol 64(8):3084–3088

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Goswami RS, Kistler HC (2005) Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95(12):1397–1404

    Article  CAS  PubMed  Google Scholar 

  53. Toth B, Kaszonyi G, Bartok T, Varga J, Mesterhazy A (2008) Common resistance of wheat to members of the Fusarium graminearum species complex and F. culmorum. Plant Breed 127(1):1–8

    Article  Google Scholar 

  54. Scauflaire J, Gourgue M, Callebaut A, Munaut F (2012) Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur J Plant Pathol 133(4):911–922

    Article  CAS  Google Scholar 

  55. Moretti A, Mule G, Ritieni A, Logrieco A (2007) Further data on the production of beauvericin, enniatins and fusaproliferin and toxicity to Artemia salina by Fusarium species of Gibberella fujikuroi species complex. Int J Food Microbiol 118(2):158–163

    Article  CAS  PubMed  Google Scholar 

  56. Lattanzio VMT, von Holst C, Visconti A (2013) Experimental design for in-house validation of a screening immunoassay kit. The case of a multiplex dipstick for Fusarium mycotoxins in cereals. Anal Bioanal Chem 405(24):7773–7782

    Article  CAS  PubMed  Google Scholar 

  57. EFSA Panel on Contaminants in the Food Chain (2013) Scientific opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J 11(6):3262

    Article  Google Scholar 

  58. Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22(4):369–378

    Article  CAS  PubMed  Google Scholar 

  59. Gerez JR, Pinto P, Callu P (2015) Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Exp Toxicol Pathol 67(3):89–98

    Article  CAS  PubMed  Google Scholar 

  60. Arunachalam C, Doohan FM (2013) Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 217(2):149–158

    Article  CAS  PubMed  Google Scholar 

  61. Beasley VR, Swanson SP, Corley RA, Buck WB, Koritz GD, Burmeister HR (1986) Pharmacokinetics of the trichothecene mycotoxin, T-2 toxin, in swine and cattle. Toxicon 24(1):13–23

    Article  CAS  PubMed  Google Scholar 

  62. Eriksen GS, Pettersson H (2004) Toxicological evaluation of trichothecenes in animal feed. Anim Feed Sci Technol 114:205–239

    Article  CAS  Google Scholar 

  63. Flannery BM, Clark ES, Pestka JJ (2012) Anorexia induction by the trichothecene deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide Yy. Toxicol Sci 130(2):289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84(9):663–679

    Article  CAS  PubMed  Google Scholar 

  65. World Health Organization (2011) Safety evaluation of certain contaminants in food: 72nd report of the joint FAO/WHO expert committee on food additives. World Health Organization (WHO Food Additives Series 63), Geneva

    Google Scholar 

  66. World Health Organization (WHO) (2000) Safety evaluation of certain mycotoxins in food. Fifty-third Report of the FAO/WHO Joint Expert Committee on Food Additives. WHO Technical Report Series 896, Geneva.

    Google Scholar 

  67. Pitt JI, Wild CP, Baan RA, Gelderblom WCA, Miller JD, Riley RT, Wu F (2012) Improving public health through mycotoxin control. IARC Scientific Publication 158, Geneva World Organization Press, Lyon

    Google Scholar 

  68. Yoshizawa T (1983) Red-mold diseases and natural occurrence in Japan. In: Uedo Y (ed) Trichothecenes, chemical, biological and toxicological aspects. Kodansha, Tokyo, pp 195–209

    Google Scholar 

  69. Eudes F, Comeau A, Rioux S, Collin J (2000) Phytotoxicity of eight mycotoxins associated with Fusarium in wheat head blight. Can J Plant Pathol 22(3):286–292

    Article  CAS  Google Scholar 

  70. Proctor RH, Hohn TM, McCormick SP (1997) Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. Microbiology 143:2583–2591

    Article  CAS  PubMed  Google Scholar 

  71. Harris LJ, Desjardins AE, Plattner RD, Nicholson P, Butler G, Young JC, Weston G, Proctor RH, Hohn TM (1999) Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Dis 83(10):954–960

    Article  Google Scholar 

  72. Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8(4):593–601

    Article  CAS  PubMed  Google Scholar 

  73. Bruns T, Wise RP, Munkvold GP (2015) Colonization of maize, wheat and soybean seedlings by mycotoxin-deficient mutants of Fusarium graminearum and F. verticillioides. 13th European Fusarium Seminar Martina Franca, Italy, p. 63

    Google Scholar 

  74. Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci U S A 102(46):16892–16897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bai GH, Plattner R, Desjardins A, Kolb F (2008) Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breed 120(1):1–6

    Article  Google Scholar 

  76. Schollenberger M, Mueller HM, Ernst K, Sondermann S, Liebscher M, Schlecker C, Wischer G et al (2012) Occurrence and distribution of 13 trichothecene toxins in naturally contaminated maize plants in Germany. Toxins 4(10):778–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Council for Agricultural Science and Technology, CAST (2003) Mycotoxins: risks in plant and animal systems. Task Force Report No. 139, Ames, IA

    Google Scholar 

  78. Urry WH, Wehrmeister HL, Hodge EB, Hidy PH (1966) The structure of zearalenone from Gibberella zeae, Fusarium graminearum. Tetrahedron Lett 27:3109–3114

    Article  Google Scholar 

  79. Hidy PH, Baldwin RS, Greasham RL, Keith CL, McMullen JR (1977) Zearalenone and some derivatives: production and biological activities. Adv Appl Microbiol 22:59–82

    Article  CAS  PubMed  Google Scholar 

  80. Hurd RN (1977) Structure activity relationships in zearalenones. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox, Park Forest South

    Google Scholar 

  81. Hagler WM Jr, Towers NR, Mirocha CJ (2001) Zearalenone: mycotoxin or mycoestrogen? In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium: Paul E. Nelson memorial symposium. APS Press, St. Paul

    Google Scholar 

  82. Prelusky DB, Rotter BA, Rotter RG (1994) Toxicology of mycotoxins. In: Jd M, Trenholmes HL (eds) Mycotoxins in grain: compounds other than aflatoxin. Eagan Press, St. Paul

    Google Scholar 

  83. Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18

    Article  CAS  PubMed  Google Scholar 

  84. US National Toxicology Program (1982) Carcinogenesis bioassay of Zearalenone (CAS No. 17924-92-4) In F344/N Rats and B6C3F1 Mice (Feed Study). Technical report series no 235, NIH publ. No 83-1791. Research Triangle Park

    Google Scholar 

  85. Martins ML, Martins HM (2002) Influence of water activity, temperature and incubation time on the simultaneous production of deoxynivalenol and zearalenone in corn (Zea mays) by Fusarium graminearum. Food Chem 79(3):315–318

    Article  Google Scholar 

  86. Susca A, Moretti A, Stea G, Villani A, Haidukowski M, Logrieco A, Munkvold G (2014) Comparison of species composition and fumonisin production in Aspergillus section Nigri populations in maize kernels from USA and Italy. Int J Food Microbiol 188:75–82

    Article  CAS  PubMed  Google Scholar 

  87. World Health Organization (WHO) (2000) In: Fumonisin B1. Environmental health criteria, vol 219, 150 pp

    Google Scholar 

  88. Smith GW, Constable PD, Foreman JH, Eppley RM, Waggoner AL, Tumbleson ME, Haschek WM (2002) Cardiovascular changes associated with intravenous administration of fumonisin B1 in horses. Am J Vet Res 63(4):538–545

    Article  CAS  PubMed  Google Scholar 

  89. Constable PD, Smith GW, Rottinghaus GE, Tumbleson ME, Haschek WM (2003) Fumonisin-induced blockade of ceramide synthase in sphingolipid biosynthetic pathway alters aortic input impedance spectrum of pigs. Am J Physiol Heart Circ Physiol 284(6):H2034–H2044

    Article  CAS  PubMed  Google Scholar 

  90. Marasas WFO (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. IARC (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans 82, IARC Press, Lyon

    Google Scholar 

  92. Desjardins AE, Plattner RD, Nelsen TC, Leslie JF (1995) Genetic-analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings. Appl Environ Microbiol 61(1):79–86

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Desjardins AE, Munkvold GP, Plattner RD, Proctor RH (2002) FUM1—a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant Microbe Interact 15:1157–1164

    Article  CAS  PubMed  Google Scholar 

  94. Arias SL, Theumer MG, Mary VS, Rubinstein HR (2012) Fumonisins: probable role as effectors in the complex interaction of susceptible and resistant maize hybrids and Fusarium verticillioides. J Agric Food Chem 60(22):5667–5675

    Article  CAS  PubMed  Google Scholar 

  95. Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT, Proctor RH (2008) Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant Microbe Interact 21(1):87–97

    Article  CAS  PubMed  Google Scholar 

  96. Bezuidenhout SC, Gelderblom WCA, Gorstallman CP, Horak RM, Marasas WFO, Spiteller G, Vleggaar R (1988) Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun 11:743–745

    Article  Google Scholar 

  97. Rheeder JP, Marasas WFO, Thiel PG, Sydenham EW, Shephard GS, Vanschalkwyk DJ (1992) Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 82(3):353–357

    Article  Google Scholar 

  98. Shephard GS, Van der Westhuizen L, Sewram V (2007) Biomarkers of exposure to fumonisin mycotoxins: a review. Food Addit Contam 24(10):1196–1201

    Article  CAS  PubMed  Google Scholar 

  99. Wang H, Wei H, Ma J, Luo X (2000) The fumonisin B1 content in corn from North China, a high-risk area of esophageal cancer. J Environ Pathol Toxicol Oncol 19:139–141

    CAS  PubMed  Google Scholar 

  100. Sun G, Wang S, Hu X, Su J, Huang T, Yu J, Tang L, Gao W, Wang JS (2007) Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 24(2):181–185

    Article  CAS  Google Scholar 

  101. Franceschi S, Bidoli E, Baron AE, Lavecchia C (1990) Maize and risk of cancers of the oral cavity, pharynx, and esophagus in Northeastern Italy. J Natl Cancer Inst Monogr 82(17):1407–1411

    Article  CAS  Google Scholar 

  102. Alizadeh AM, Roshandel G, Roudbarmohammadi S, Roudbary M, Sohanaki H, Ghiasian SA, Taherkhani A, Semnani S, Aghasi M (2012) Fumonisin B1 contamination of cereals and risk of esophageal cancer in a high risk area in Northeastern Iran. Asian Pac J Cancer Prev 13(6):2625–2628

    Article  PubMed  Google Scholar 

  103. Howard PC, Eppley RM, Stack ME, Warbritton A, Voss KA, Lorentzen RJ, Kovach RM, Bucci TJ (2001) Fumonisin B1 carcinogenicity in a two-year feeding study using F344 rats and B6c3f1 mice. Environ Health Perspect 109:277–282

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gelderblom WCA, Abel S, Smuts CM, Marnewick J, Marasas WFO, Lemmer ER, Ramljak D (2001) Toxicity of cultured material of Fusarium verticilloides strain MRC 826 to nonhuman primates. Environ Health Perspect 109(Supplement 2):291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH, Rothman KJ, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Health Perspect 114(2):237–241

    Article  PubMed  Google Scholar 

  106. Marasas WFO, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van WJ, Missmer SA et al (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134(4):711–716

    CAS  PubMed  Google Scholar 

  107. Gelineau-van WJ, Voss KA, Stevens VL, Speer MC, Riley RT (2009) Maternal fumonisin exposure as a risk factor for neural tube defects. Adv Food Nutr Res 56:145–181

    Article  CAS  Google Scholar 

  108. Marasas WFO, Kellerman TS, Gelderblom WCA, Coetzer JAW, Thiel FG, van der Lugt JJ (1998) Leucoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium verticillioides. Onderstepoort J Vet Res 55:197–203

    Google Scholar 

  109. Sheldon JL (1904) A corn mold (Fusarium moniliforme n. sp.). In: Agricultural experiment station of Nebraska: 17th annual report

    Google Scholar 

  110. Kriek NPJ, Kellerman TS, Marasas WFO (1981) A comparative-study of the toxicity of Fusarium verticillioides (=F. moniliforme) to horses, primates, pigs, sheep and rats. Onderstepoort J Vet Res 48(2):129–131

    CAS  PubMed  Google Scholar 

  111. Osweiler GD, Ross PF, Wilson TM, Nelson PE, Witte ST, Carson TL, Rice LG, Nelson HA (1992) Characterization of an epizootic of pulmonary-edema in swine associated with fumonisin in corn screenings. J Vet Diagn Invest 4(1):53–59

    Article  CAS  PubMed  Google Scholar 

  112. Harrison LR, Colvin BM, Greene JT, Newman LE, Cole JR (1990) Pulmonary oedema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium verticillioides. J Vet Diagn Invest 2:217–221

    Article  CAS  PubMed  Google Scholar 

  113. Gumprecht LA, Beasley VR, Weigel RM, Parker HM, Tumbleson ME, Bacon CW, Meredith FI, Haschek WM (1998) Development of fumonisin-induced hepatotoxicity and pulmonary edema in orally dosed swine: morphological and biochemical alterations. Toxicol Pathol 26(6):777–788

    Article  CAS  PubMed  Google Scholar 

  114. Haschek WM, Gumprecht LA, Smith G, Tumbleson ME, Constable PD (2001) Fumonisin toxicosis in swine: an overview of porcine pulmonary edema and current perspectives. Environ Health Perspect 109:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Delgado JE, Wolt JD (2010) Fumonisin B1 and implications in nursery swine productivity: a quantitative exposure assessment. J Anim Sci 88(11):3767–3777

    Article  CAS  PubMed  Google Scholar 

  116. Delgado JE, Wolt JD (2011) Fumonisin B1 toxicity in grower-finisher pigs: a comparative analysis of genetically engineered Bt corn and non-Bt corn by using quantitative dietary exposure assessment modeling. Int J Environ Res Public Health 8(8):3179–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Logrieco A, Mule G, Moretti A, Bottalico A (2002) Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur J Plant Pathol 108(7):597–609

    Article  CAS  Google Scholar 

  118. Gelineau van Waes J, Maddox J, Ashley-Koch A, Gregory S, Torres de Matute O, Voss KA, Riley RT (2011) Evaluating human exposure to fumonisins in Guatemala and its possible role as a contributing factor to neural tube defects. Phytopathology 101(6):S222

    Google Scholar 

  119. Munkvold GP, Desjardins AE (1997) Fumonisins in maize—can we reduce their occurrence? Plant Dis 81(6):556–565

    Article  CAS  Google Scholar 

  120. Egmond HP, Jonker MA (2004) Current regulations governing mycotoxin limits in food. In: Magan N, Olsen M (eds) Mycotoxins in food: detection and control. CRC, Boca Raton

    Google Scholar 

  121. Liu J, Bell AA, Stipanovic R, Puckhaber L, Shim W (2011) A polyketide synthase gene and an aspartate kinase like gene are required for the biosynthesis of fusaric acid in Fusarium oxysporum f. sp. vasinfectum. In: Abstract of the proceedings of the Beltwide Cotton Conferences, Marriott Marquis, Atlanta, 5–7 Jan 2011

    Google Scholar 

  122. Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49(7):521–532

    Article  CAS  PubMed  Google Scholar 

  123. Brown DW, Lee SH, Kim LH, Ryu JG, Lee S, Seo Y, Kim YH et al (2015) Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Mol Plant Microbe Interact 28(3):319–332

    Article  CAS  PubMed  Google Scholar 

  124. Bryden WL, Logrieco A, Abbas HK (2001) Other significant Fusarium mycotoxins. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium: Paul E. Nelson memorial symposium. APS Press, St. Paul

    Google Scholar 

  125. Scarpino V, Reyneri A, Vanara F, Scopel C, Causin R, Blandino M (2015) Relationship between European corn borer injury, Fusarium proliferatum and F. subglutinans infection and moniliformin contamination in maize. Field Crops Res 183:69–78

    Article  Google Scholar 

  126. Han Z, Tangni EK, Huybrechts B, Munaut F, Scauflaire J, Wu A, Callebaut A (2014) Screening survey of co-production of fusaric acid, fusarin C, and fumonisins B1, B2 and B3 by Fusarium strains grown in maize grains. Mycotoxin Res 30(4):231–240

    Article  CAS  PubMed  Google Scholar 

  127. Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, Freitag M et al (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20(8):1055–1066

    Article  CAS  PubMed  Google Scholar 

  128. Kleigrewe K, Soehnel AC, Humpf HU (2011) A new high-performance liquid chromatography-tandem mass spectrometry method based on dispersive solid phase extraction for the determination of the mycotoxin fusarin C in corn ears and processed corn samples. J Agric Food Chem 59(19):10470–10476

    Article  CAS  PubMed  Google Scholar 

  129. Bottalico A, Logrieco A, Ritieni A, Moretti A, Randazzo G, Corda P (1995) Beauvericin and fumonisin B1 in preharvest Fusarium moniliforme maize ear rot in Sardinia. Food Addit Contam 12(4):599–607

    Article  CAS  PubMed  Google Scholar 

  130. Moretti A, Logrieco A, Bottalico A, Ritieni A, Fogliano V, Randazzo G (1996) Diversity in beauvericin and fusaproliferin production by different populations of Gibberella fujikuroi (Fusarium section Liseola). Sydowia 48(1):44–56

    Google Scholar 

  131. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) (2014) Scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J 12(8):3802

    Article  CAS  Google Scholar 

  132. Ritieni A, Fogliano V, Randazzo G, Scarallo A, Logrieco A, Moretti A, Mannina L, Bottalico A (1995) Isolation and characterization of fusaproliferin, a new toxic metabolite from Fusarium proliferatum. Nat Toxins 3(1):17–20

    Article  CAS  PubMed  Google Scholar 

  133. Munkvold G, Stahr HM, Logrieco A, Moretti A, Ritieni A (1998) Occurrence of fusaproliferin and beauvericin in Fusarium-contaminated livestock feed in Iowa. Appl Environ Microbiol 64(10):3923–3926

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Pavlovkin J, Jaskova K, Mistrikova I, Tamas L (2011) Impact of fusaproliferin on primary roots of maize cultivars differing in their susceptibility to Fusarium. Biologia 66(6):1044–10451

    Article  CAS  Google Scholar 

  135. Santini A, Meca G, Uhlig S, Ritieni A (2012) Fusaproliferin, beauvericin and enniatins: occurrence in food—a review. World Mycotoxin J 5(1):71–81

    Article  CAS  Google Scholar 

  136. Díaz Arias MM, Leandro LF, Munkvold GP (2013) Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybean. Phytopathology 103:822–832

    Article  Google Scholar 

  137. Marin P, Moretti A, Ritieni A, Jurado M, Vazquez C, Gonzalez-Jaen MT (2012) Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from Southern Europe. Food Microbiol 31(2):229–237

    Article  CAS  PubMed  Google Scholar 

  138. Nagy R, Hornok L (1994) Electrophoretic karyotype differences between 2 subspecies of Fusarium acuminatum. Mycologia 86(2):203–208

    Article  Google Scholar 

  139. Nichea MJ, Cendoya E, Zachetti VGL et al (2015) Mycotoxin profile of Fusarium armeniacum isolated from natural grasses intended for cattle feed. World Mycotoxin J 8(4):451–457

    Article  CAS  Google Scholar 

  140. Ellis ML, Arias MMD, Leandro LF, Munkvold GP (2012) First report of Fusarium armeniacum causing seed rot and root rot on soybean (Glycine max) in the United States. Plant Dis 96(11):1693

    Article  Google Scholar 

  141. Miedaner T, Caixeta F, Talas F (2013) Head-blighting populations of Fusarium culmorum from Germany, Russia, and Syria analyzed by microsatellite markers show a recombining structure. Eur J Plant Pathol 137(4):743–752

    Article  Google Scholar 

  142. van der Lee T, Zhang H, van Diepeningen A, Waalwijk C (2015) Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32(4):453–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Lazreg F, Belabid L, Sanchez J, Gallego E, Garrido-Cardenas JA, Elhaitoum A (2014) First report of Fusarium equiseti causing damping-off disease on aleppo pine in Algeria. Plant Dis 98(9):1268–1269

    Article  Google Scholar 

  144. Garibaldi A, Gilardi G, Ortu G, Gullino ML (2015) First report of leaf spot of wild rocket (Diplotaxis tenuifolia) caused by Fusarium equiseti in Italy. Plant Dis 99(8):1183–1184

    Article  Google Scholar 

  145. Brian PW, Norris GLF, Hemming HG, Dawkins AW, Grove JF, Lowe D (1961) Phytotoxic compounds produced by Fusarium equiseti. J Exp Bot 12(1):1–12

    Article  CAS  Google Scholar 

  146. Goldschmied-Reouven A, Friedman J, Block CS (1993) Fusarium spp. isolated from non-ocular sites: a 10 year experience at an Israeli General Hospital. J Mycol Med 3(2):99–102

    Google Scholar 

  147. Nirenberg HL (1976) Untersuchungen uber die morphologische und biologische differenzierung in der Fusarium section Liseola. Mitteilungen aus der biologischen bundesanstalt fur land–und forstwirtschaft (Berlin-Dahlem) 169:1–117

    Google Scholar 

  148. Kuhlman EG (1982) Varieties of Gibberella fujikuroi with Anamorphs in Fusarium section Liseola. Mycologia 74(5):759–768

    Article  Google Scholar 

  149. Leslie JF (1995) Gibberella fujikuroi—available populations and variable traits. Can J Bot 73:S282–S291

    Article  Google Scholar 

  150. Watanabe T, Umehara Y (1977) Perfect state of causal fungus of bakanae disease of rice plants recollected at Toyama. T Mycol Soc Jpn 18(2):136–142

    Google Scholar 

  151. Ploetz RC (2001) Significant diseases in the tropics that are caused by species of Fusarium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium: Paul E. Nelson memorial symposium. APS Press, St. Paul

    Google Scholar 

  152. Proctor RH, Plattner RD, Brown DW, Seo JA, Lee YW (2004) Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res 108:815–822

    Article  CAS  PubMed  Google Scholar 

  153. Snyder WC, Hansen HN, Oswald JW (1957) Cultivars of the fungus, Fusarium. J Madras Univ 27:185–192

    Google Scholar 

  154. O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41(6):600–623

    Article  PubMed  CAS  Google Scholar 

  155. Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H et al (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44(11):1191–1204

    Article  CAS  PubMed  Google Scholar 

  156. Barros GG, Alaniz Zanon MS, Chiotta ML, Reynoso MM, Scandiani MM, Chulze SN (2014) Pathogenicity of phylogenetic species in the Fusarium graminearum complex on soybean seedlings in Argentina. Eur J Plant Pathol 138(2):215–222

    Article  CAS  Google Scholar 

  157. Broders KD, Lipps PE, Paul PA, Dorrance AE (2007) Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in Ohio. Plant Dis 91(9):1155–1160

    Article  Google Scholar 

  158. Bilgi VN, Bradley CA, Mathew FM, Ali S, Rasmussen JB (2011) Root rot of dry edible bean caused by Fusarium graminearum. Plant Health Prog. doi:10.1094/PHP-2011-0425-01-RS

    Google Scholar 

  159. Vesonder RF, Ciegler A, Jensen AH (1973) Isolation of emetic principle from Fusarium-infected corn. Appl Microbiol 26(6):1008–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Yoshizawa T, Morooka N (1973) Deoxynivalenol and its monoacetate - new mycotoxins from Fusarium roseum and moldy barley. Agric Biol Chem 37(12):2933–2934

    Article  CAS  Google Scholar 

  161. Kelly AC, Clear RM, O'Donnell K, McCormick S, Turkington TK, Tekauz A, Gilbert J et al (2015) Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet Biol 82:22–31

    Article  CAS  PubMed  Google Scholar 

  162. Ellis ML, Munkvold GP (2014) Trichothecene genotype of Fusarium graminearum isolates from soybean (Glycine max) seedling and root diseases in the United States. Plant Dis 98(7):1012–1013

    Article  Google Scholar 

  163. Barros G, Alaniz Zanon MS, Abod A, Oviedo MS, Ramirez ML, Reynoso MM, Torres A, Chulze S (2012) Natural deoxynivalenol occurrence and genotype and chemotype determination of a field population of the Fusarium graminearum complex associated with soybean in Argentina. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29(2):293–303

    Article  CAS  PubMed  Google Scholar 

  164. Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schoefbeck D, McCormick S et al (2015) New tricks of an old enemy: isolates of Fusarium graminearum produce a type a trichothecene mycotoxin. Environ Microbiol 17(8):2588–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liang JM, Xayamongkhon H, Broz K, Dong Y, McCormick SP, Abramova S, Ward TJ, Ma ZH, Kistler HC (2014) Temporal dynamics and population genetic structure of Fusarium graminearum in the upper midwestern United States. Fungal Genet Biol 73:83–92

    Article  CAS  PubMed  Google Scholar 

  166. Backhouse D (2014) Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. Eur J Plant Pathol 139(1):161–173

    Article  Google Scholar 

  167. Gale LR, Harrison SA, Ward TJ, O’Donnell K, Milus EA, Gale SW, Kistler HC (2011) Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in Southern Louisiana. Phytopathology 101(1):124–134

    Article  CAS  PubMed  Google Scholar 

  168. Kawakami A, Kato N, Sasaya T, Tomioka K, Inoue H, Miyasaka A, Hirayae K (2015) Gibberella ear rot of corn caused by Fusarium asiaticum in Japan. J Gen Plant Pathol 81(4):324–327

    Article  Google Scholar 

  169. Zhu P, Wu L, Liu L, Huang L, Wang Y, Tang W, Xu L (2013) Fusarium asiaticum: an emerging pathogen jeopardizing postharvest asparagus spears. J Phytopathol 161(10):696–703

    Article  CAS  Google Scholar 

  170. Lee T, Lee SH, Shin JY, Kim HK, Yun SH, Kim HY, Lee S, Ryu JG (2014) Comparison of trichothecene biosynthetic gene expression between Fusarium graminearum and Fusarium asiaticum. Plant Pathol J 30(1):33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Del Ponte EM, Spolti P, Ward TJ, Gomes LB, Nicolli CP, Kuhnem PR, Silva CN, Tessmann DJ (2015) Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology 105(2):246–254

    Article  PubMed  CAS  Google Scholar 

  172. Boutigny AL, Ward TJ, Van Coller GJ, Flett B, Lamprecht SC, O'Donnell K, Viljoen A (2011) Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet Biol 48(9):914–920

    Article  CAS  PubMed  Google Scholar 

  173. Desjardins AE, Proctor RH (2011) Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biol 115(1):38–48

    Article  CAS  PubMed  Google Scholar 

  174. Sampietro DA, Diaz CG, Gonzalez V, Vattuone MA, Ploper LD, Catalan CAN, Ward TJ (2011) Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in Northwest Argentina. Int J Food Microbiol 145(1):359–364

    Article  CAS  PubMed  Google Scholar 

  175. Toth B, Mesterhazy A, Horvath Z, Bartok T, Varga M, Varga J (2005) Genetic variability of central European isolates of the Fusarium graminearum species complex. Eur J Plant Pathol 113(1):35–45

    Article  CAS  Google Scholar 

  176. Umpierrez-Failache M, Garmendia G, Pereyra S, Rodriguez-Haralambides A, Ward TJ, Vero S (2013) Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. Int J Food Microbiol 166(1):135–140

    Article  CAS  PubMed  Google Scholar 

  177. Gomes LB, Ward TJ, Badiale-Furlong E, Del Ponte EM (2015) Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from Southern Brazilian rice. Plant Pathol 64(4):980–987

    Article  CAS  Google Scholar 

  178. Somma S, Petruzzella AL, Logrieco AF, Meca G, Cacciola OS, Moretti A (2014) Phylogenetic analyses of Fusarium graminearum strains from cereals in Italy, and characterisation of their molecular and chemical chemotypes. Crop Pasture Sci 65(1):52–60

    Google Scholar 

  179. Boutigny AL, Ward TJ, Ballois N, Iancu G, Ioos R (2014) Diversity of the Fusarium graminearum species complex on french cereals. Eur J Plant Pathol 138(1):133–148

    Article  CAS  Google Scholar 

  180. Monds RD, Cromey MG, Lauren DR, di Menna M, Marshall J (2005) Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species. Mycol Res 109:410–420

    Article  CAS  PubMed  Google Scholar 

  181. Sampietro DA, Ficoseco MEA, Jimenez CM, Vattuone MA, Catalan CA (2012) Trichothecene genotypes and chemotypes in Fusarium graminearum complex strains isolated from maize fields of Northwest Argentina. Int J Food Microbiol 153:229–233

    Article  CAS  PubMed  Google Scholar 

  182. Spolti P, Barros NC, Gomes LB, dos Santos J, Del Ponte EM (2012) Phenotypic and pathogenic traits of two species of the Fusarium graminearum complex possessing either 15-ADON or NIV genotype. Eur J Plant Pathol 133(3):621–629

    Article  Google Scholar 

  183. Lamprecht SC, Tewoldemedhin YT, Botha WJ, Calitz FJ (2011) Fusarium graminearum species complex associated with maize crowns and roots in the Kwazulu-Natal Province of South Africa. Plant Dis 95(9):1153–1158

    Article  Google Scholar 

  184. Fu M, Li RJ, Guo CC, Pang MH, Liu YC, Dong JG (2015) Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32(4):503–511

    Article  CAS  PubMed  Google Scholar 

  185. Nicolli CP, Spolti P, Tibola CS, Fernandes JMC, Del Ponte EM (2015) Fusarium head blight and trichothecene production in wheat by Fusarium graminearum and F. meridionale applied alone or in mixture at post-flowering. Trop Plant Pathol 40(2):134–140

    Article  Google Scholar 

  186. Torp M, Nirenberg HI (2004) Fusarium langsethiae sp. nov. on cereals in Europe. Int J Food Microbiol 95(3):247–256

    Article  PubMed  Google Scholar 

  187. Torp M, Langseth W (1999) Production of T-2 toxin by a Fusarium resembling Fusarium poae. Mycopathologia 147(2):89–96

    Article  CAS  PubMed  Google Scholar 

  188. Imathiu SM, Ray RV, Back MI, Hare MC, Edwards SG (2013) Fusarium langsethiae—a HT-2 and T-2 toxins producer that needs more attention. J Phytopathol 161:1–10

    Article  CAS  Google Scholar 

  189. Infantino A, Santori A, Aureli G, Belocchi A, De Felice S, Tizzani L, Lattanzio VMT, Haidukowski M, Pascale M (2015) Occurrence of Fusarium langsethiae strains isolated from durum wheat in Italy. J Phytopathol 163:612–619

    Article  CAS  Google Scholar 

  190. Baayen RP, O’Donnell K, Bonants PJM, Cigelnik E, Kroon LP, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90(8):891–900

    Article  CAS  PubMed  Google Scholar 

  191. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95(5):2044–2049

    Article  PubMed  PubMed Central  Google Scholar 

  192. Skovgaard K, Rosendahl S, O’Donnell K, Nirenberg HI (2003) Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia 95(4):630–636

    Article  PubMed  Google Scholar 

  193. Laurence MH, Summerell BA, Burgess LW, Liew ECY (2014) Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol 118(4):374–384

    Article  PubMed  Google Scholar 

  194. Vanheule A, Audenaert K, Höfte M, Warris S, van de Geest H, Waalwijk C, Haesaert G, van der Lee T (2015) Presenting the fully assembled genome of Fusarium poae: repeats shed light on a cryptic sexual cycle. 13th European Fusarium Seminar Martina Franca, Italy, 10–14 May 2015, 39

    Google Scholar 

  195. Amatulli MT, Spadaro D, Gullino ML, Garibaldi A (2012) Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. Eur J Plant Pathol 134(2):401–408

    Article  CAS  Google Scholar 

  196. Chulze SN, Ramirez ML, Farnochi MC, Pascale M, Visconti A, March G (1996) Fusarium and fumonisin occurrence in Argentinian cool at different ear maturity stages. J Agric Food Chem 44(9):2797–2801

    Article  CAS  Google Scholar 

  197. Nirenberg HI (1995) Morphological differentiation of Fusarium sambucinum Fuckel sensu stricto, F. torulosum (Berk and Curt) Nirenberg comb. nov. and F. venenatum Nirenberg sp. nov. Mycopathologia 129(3):131–141

    Article  CAS  PubMed  Google Scholar 

  198. Chehri K, Salleh B, Zakaria L (2015) Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb Ecol 69(3):457–471

    Article  PubMed  Google Scholar 

  199. O’Donnell K, Sutton DA, Fothergill A et al (2008) Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J Clin Microbiol 46:2477–2490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Short DPG, O’Donnell K, Thrane U, Nielsen KF, Zhang N, Juba JH, Geiser DM (2013) Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genet Biol 53:59–70

    Article  PubMed  Google Scholar 

  201. Lenc L, Lukanowski A, Sadowski C (2008) The use of PCR amplification in determining the toxigenic potential of Fusarium sambucinum and F. solani isolated from potato tubers with symptoms of dry rot. Phytopathol Pol 48:13–23

    Google Scholar 

  202. Lenc L (2011) Pathogenicity and potential capacity for producing mycotoxins by Fusarium sambucinum and Fusarium solani isolates derived from potato tubers. Plant Breed Seed Sci 64:23–34

    Google Scholar 

  203. Fumero M, Reynoso M, Chulze S (2015) Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina. Int J Food Microbiol 199:86–92

    Article  CAS  PubMed  Google Scholar 

  204. Shin JH, Han JH, Lee JK, Kim KS (2014) Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol J 30(4):397–406

    Article  PubMed  PubMed Central  Google Scholar 

  205. Bottalico A (1998) Fusarium diseases of cereals: species complex and related mycotoxin profiles, in Europe. J Plant Pathol 80(2):85–103

    CAS  Google Scholar 

  206. Munkvold GP, Logrieco A, Moretti A, Ferracane R, Ritieni A (2009) Dominance of group 2 and fusaproliferin production by Fusarium subglutinans from Iowa maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26(3):388–394

    Article  CAS  PubMed  Google Scholar 

  207. Scauflaire J, Gourgue M, Callebaut A, Munaut F (2011) Fusarium temperatum sp. nov. from maize: an emergent species closely related to Fusarium subglutinans. Mycologia 103(3):586–597

    Article  PubMed  Google Scholar 

  208. Desjardins AE, Plattner RD, Gordon TR (2000) Gibberella fujikuroi mating population a and Fusarium subglutinans from teosinte species and maize from Mexico and Central America. Mycol Res 104:865–872

    Article  Google Scholar 

  209. Steenkamp ET, Wingfield BD, Desjardins AE, Marasas WFO, Wingfield MJ (2002) Cryptic speciation in Fusarium subglutinans. Mycologia 94(6):1032–1043

    Article  CAS  PubMed  Google Scholar 

  210. Czembor E, Stepien L, Waskiewicz A (2014) Fusarium temperatum as a new species causing ear rot on maize in Poland. Plant Dis 98(7):1001

    Article  Google Scholar 

  211. Varela CP, Aguin CO, Chaves PM, Ferreiroa MV, Sainz Oses MJ, Scauflaire J, Munaut F, Bande Castro MJ, Mansilla Vazquez JP (2013) First report of Fusarium temperatum causing seedling blight and stalk rot on maize in Spain. Plant Dis 97(9):1252–1253

    Article  Google Scholar 

  212. Lanza F, Mayfield D, Munkvold GP (2016) First report of Fusarium temperatum causing maize seedling blight and seed rot in North America. Plant Dis 100:1019

    Article  Google Scholar 

  213. Zhang H, Luo W, Pan Y, Xu J, Xu JS, Chen WQ, Feng J (2014) First report of Fusarium temperatum causing Fusarium ear rot on maize in Northern China. Plant Dis 98(9):1273

    Google Scholar 

  214. Castanares E, Stenglein SA, Dinolfo MI, Moreno MV (2011) Fusarium tricinctum associated with head blight on wheat in Argentina. Plant Dis 95(4):496

    Article  Google Scholar 

  215. Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108(7):611–624

    Article  CAS  Google Scholar 

  216. Chitrampalam P, Nelson BD Jr (2014) Effect of Fusarium tricinctum on growth of soybean and a molecular-based method of identification. Plant Health Prog. doi:10.1094/PHP-RS-14-0014

    Google Scholar 

  217. Zaher AM, Makboul MA, Moharram AM, Tekwani BL, Calderon AI (2015) A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J Antibiot 68(3):197–200

    Article  CAS  PubMed  Google Scholar 

  218. Cuomo V, Randazzo A, Meca G, Moretti A, Cascone A, Eriksson O, Novellino E, Ritieni A (2013) Production of enniatins A, A1, B, B1, B4, J1 by Fusarium tricinctum in solid corn culture: structural analysis and effects on mitochondrial respiration. Food Chem 140(4):784–793

    Article  CAS  PubMed  Google Scholar 

  219. Saccardo PA (1886) Sylloge fungorum omnium hucusque cognitorum, 4th edn. Edwards Bros, Ann Arbor

    Google Scholar 

  220. Wineland GO (1924) An ascigerous stage and synonomy for Fusarium moniliforme. J Agric Res 28:909–922

    Google Scholar 

  221. Moretti A, Mule G, Susca A, Gonzalez-Jaen MT, Logrieco A (2004) Toxin profile, fertility and AFLP analysis of Fusarium verticillioides from banana fruits. Eur J Plant Pathol 110:601–609

    Article  CAS  Google Scholar 

  222. Van Hove F, Waalwijk C, Logrieco A, Munaut F, Moretti A (2011) Gibberella musae (Fusarium musae) sp nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia 103(3):570–585

    Article  PubMed  CAS  Google Scholar 

  223. Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38(2):237–249

    Article  CAS  PubMed  Google Scholar 

  224. Zeller KA, Summerell BA, Bullock S, Leslie JF (2003) Gibberella konza (Fusarium konzum) sp nov from prairie grasses, a new species in the Gibberella fujikuroi species complex. Mycologia 95(5):943–954

    Article  PubMed  Google Scholar 

  225. Leslie JF, Zeller KA, Logrieco A, Mule G, Moretti A, Ritieni A (2004) Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Appl Environ Microbiol 70(4):2254–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Triest D, Stubbe D, De Cremer K, Pierard D, Detandt M, Hendrickx M (2015) Banana infecting fungus, Fusarium musae, is also an opportunistic human pathogen: are bananas potential carriers and source of fusariosis? Mycologia 107(1):46–53

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Robert Proctor, USDA-ARS, Peoria, IL, for contributing information regarding Fusarium genome sequences, and to Ms. Lauren Washington, Iowa State University, for assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary P. Munkvold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Munkvold, G.P. (2017). Fusarium Species and Their Associated Mycotoxins. In: Moretti, A., Susca, A. (eds) Mycotoxigenic Fungi. Methods in Molecular Biology, vol 1542. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6707-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6707-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6705-6

  • Online ISBN: 978-1-4939-6707-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics