Skip to main content

Multiplex Detection of Toxigenic Penicillium Species

  • Protocol
  • First Online:
  • 2517 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1542))

Abstract

Multiplex PCR-based methods for simultaneous detection and quantification of different mycotoxin-producing Penicillia are useful tools to be used in food safety programs. These rapid and sensitive techniques allow taking corrective actions during food processing or storage for avoiding accumulation of mycotoxins in them. In this chapter, three multiplex PCR-based methods to detect at least patulin- and ochratoxin A-producing Penicillia are detailed. Two of them are different multiplex real-time PCR suitable for monitoring and quantifying toxigenic Penicillium using the nonspecific dye SYBR Green and specific hydrolysis probes (TaqMan). All of them successfully use the same target genes involved in the biosynthesis of such mycotoxins for designing primers and/or probes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Frisvad JC, Smedsgaard J, Larsen TO et al (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  2. Lund F, Frisvad JC (2003) Penicillium verrucosum in wheat and barley indicates presence of ochratoxin A. J Appl Microbiol 95:1117–1123

    Article  CAS  PubMed  Google Scholar 

  3. Niessen L (2007) PCR-based diagnosis and quantification of mycotoxin producing fungi. Int J Food Microbiol 119:38–46

    Article  CAS  PubMed  Google Scholar 

  4. Baily JD, Tabuc C, Quérin A et al (2005) Production and stability of patulin, ochratoxin A, citrinin, and cyclopiazonic acid on dry-cured ham. J Food Prot 68:1516–1520

    Article  Google Scholar 

  5. Bogs C, Battilani P, Geisen R (2006) Development of a molecular detection and differentiation system for ochratoxin A producing Penicillium species and its application to analyse the occurrence of Penicilliumnordicum in cured meats. Int J Food Microbiol 107:39–47

    Article  CAS  PubMed  Google Scholar 

  6. Dorner JW (2002) Recent advances in analytical methodology for cyclopiazonic acid. Adv Exp Med Biol 504:107–116

    Article  CAS  PubMed  Google Scholar 

  7. Núñez F, Díaz MC, Rodríguez M et al (2000) Effects of substrate, water activity, and temperature on growth and verrucosidin production by Penicillium polonicum isolated from dry-cured ham. J Food Prot 63:232–236

    Article  Google Scholar 

  8. Rodríguez A, Rodríguez M, Martín A et al (2012) Presence of ochratoxin A on the surface of dry-cured Iberian ham after initial fungal growth in the drying stage. Meat Sci 90:728–734

    Article  Google Scholar 

  9. Tangni EK, Theys R, Mignolet E et al (2003) Patulin in domestic and imported apple-based drinks in Belgium: occurrence and exposure assessment. Food Addit Contam 20:482–489

    Article  CAS  PubMed  Google Scholar 

  10. Dao HP, Mathieu F, Lebrihi A (2005) Two primer pairs to detect OTA producers by PCR method. Int J Food Microbiol 36:215–220

    Google Scholar 

  11. Hayat A, Paniel N, Rhouati A et al (2012) Recent advances in ochratoxin A-producing fungi detection based on PCR methods and ochratoxin A analysis in food matrices. Food Control 26:401–415

    Article  CAS  Google Scholar 

  12. Rodríguez A, Andrade MJ, Rodríguez M et al (2014) Detection of mycotoxin-producing moulds and mycotoxins in foods. In: Rai VR, Bai JA (eds) Microbial food safety and preservation techniques. CRC Press, New York, pp 191–213

    Google Scholar 

  13. Geisen R, Mayer Z, Karolewiez A et al (2004) Development of a Real Time PCR system for detection of Penicillium nordicum and for monitoring ochratoxin A production in foods by targeting the ochratoxin polyketide synthase gene. Syst Appl Microbiol 27:501–507

    Article  CAS  PubMed  Google Scholar 

  14. Luque MI, Rodríguez A, Andrade MJ et al (2011) Development of a PCR protocol to detect patulin producing moulds in food products. Food Control 22:1831–1838

    Article  CAS  Google Scholar 

  15. Luque MI, Córdoba JJ, Rodríguez A et al (2013) Development of a PCR protocol to detect ochratoxin A producing moulds in food products. Food Control 29:270–278

    Article  CAS  Google Scholar 

  16. Paterson RRM, Archer S, Kozakiewicz Z et al (2000) A gene probe for the patulin metabolic pathway with potential use in novel disease control. Biocontrol Sci Technol 10:509–512

    Article  Google Scholar 

  17. Rodríguez A, Luque MI, Andrade MJ et al (2011) Development of real-time PCR methods to quantify patulin-producing molds in food products. Food Microbiol 28:1190–1199

    Article  PubMed  Google Scholar 

  18. Rodríguez A, Rodríguez M, Luque MI et al (2011) Quantification of ochratoxin A-producing molds in food products by SYBR Green and TaqMan real-time PCR methods. Int J Food Microbiol 149:226–235

    Article  PubMed  Google Scholar 

  19. Rodríguez A, Córdoba JJ, Werning ML et al (2012) Duplex real-time PCR method with internal amplification control for quantification of verrucosidin producing molds in dry-ripened foods. Int J Food Microbiol 153:85–91

    Article  PubMed  Google Scholar 

  20. Rodríguez A, Werning ML, Rodríguez M et al (2012) Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid-producing molds in foods. Food Microbiol 32:397–405

    Google Scholar 

  21. Schmidt-Heydt M, Richter W, Michulec M et al (2008) Comprehensive molecular system to study the presence, growth and ochratoxin A biosynthesis of Penicillium verrucosum in wheat. Food Addit Contam 25:989–996

    Article  CAS  Google Scholar 

  22. Luque MI, Andrade MJ, Rodríguez A et al (2013) Development of a multiplex PCR method for the detection of patulin-, ochratoxin A- and aflatoxin-producing moulds in foods. Food Anal Meth 6:1113–1121

    Article  Google Scholar 

  23. Rodríguez A, Rodríguez M, Andrade MJ et al (2012) Development of a multiplex real-time PCR to quantify aflatoxin, ochratoxin A and patulin producing molds in foods. Int J Food Microbiol 155:10–18

    Article  PubMed  Google Scholar 

  24. Rodríguez A (2012) Desarrollo de métodos de PCR en tiempo real para la detección y cuantificación de mohos productores de micotoxinas en alimentos. Doctoral thesis, University of Extremadura, Spain.

    Google Scholar 

  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  26. Mayer Z, Bagnara A, Färber P et al (2003) Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int J Food Microbiol 82:143–151

    Article  CAS  PubMed  Google Scholar 

  27. Rodríguez A, Rodríguez M, Córdoba JJ et al (2015) Design of primers and probes for quantitative real-time PCR methods. In: Chhandak B (ed) PCR primer design (Series: Methods in Molecular Biology). Humana Press, New York, pp 31–56

    Chapter  Google Scholar 

  28. Priyanka SR, Venkataramana M, Balakrishna K et al (2015) Development and evaluation of a multiplex PCR assay for simultaneous detection of major mycotoxigenic fungi from cereals. J Food Sci Technol 52:486–492

    Article  CAS  Google Scholar 

  29. Invitrogen (2008) Real-Time PCR: from theory to practice. Invitrogen Corporation, Carlsbad

    Google Scholar 

  30. Holland PM, Abramson RD, Watson R et al (1991) Detection of specific polymerase chain reaction product by utilizing the 50–30 exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heid CA, Stevens J, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  32. Bernáldez V, Rodríguez A, Martín A et al (2014) Development of a multiplex qPCR method for simultaneous quantification in dry cured ham of an antifungal-peptide Penicillium chrysogenum strain used as protective culture and aflatoxin-producing moulds. Food Control 36:257–266

    Article  Google Scholar 

  33. Paterson RRM (2004) The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors. Mycol Res 108:1431–1437

    Article  CAS  PubMed  Google Scholar 

  34. Richard E, Heutte N, Bouchart V et al (2009) Evaluation of fungal contamination and mycotoxin production in maize silage. Anim Feed Sci Tech 148:309–320

    Article  CAS  Google Scholar 

  35. Applied Biosystems (2010) Fast SYBR® Green Master Mix Protocol. https://tools.lifetechnologies.com/content/sfs/manuals/cms_046776.pdf. Accessed July 2010.

Download references

Acknowledgments

This work was supported by AGL2010-21623 and Carnisenusa CSD2007-00016—ConsoliderIngenio 2010 from the Spanish Comision Interministerial de Ciencia y Tecnología projects and GR10162 of the Junta de Extremadura and FEDER. Dr. A. Rodríguez is supported by a “Juan de la Cierva-Incorporación” Senior Research Fellowship (IJCI-2014-20666) from the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rodríguez, A., Córdoba, J.J., Rodríguez, M., Andrade, M.J. (2017). Multiplex Detection of Toxigenic Penicillium Species. In: Moretti, A., Susca, A. (eds) Mycotoxigenic Fungi. Methods in Molecular Biology, vol 1542. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6707-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6707-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6705-6

  • Online ISBN: 978-1-4939-6707-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics