Skip to main content

Multiplex Detection of Fusarium Species

  • Protocol
  • First Online:
Mycotoxigenic Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1542))

Abstract

Multiplex PCR is a powerful method to detect, identify, and quantify the mycotoxigenic fungus by targeting the amplification of genes associated with mycotoxin production and detection, identification, and quantification of Fusarium species. As compared with uniplex PCR, it has several advantages such as low cost, shortened time, and simultaneous amplification of more than two genes (in only one reaction tube). Here, we describe multiplex PCR-based detection and identification of trichothecene-, zearalenone-, fumonisin-, and enniatin-producing Fusarium species, the use of multiplex PCR in multiplex genotype assay and the use of multiplex TaqMan real-time qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandler EA, Simpson DR, Thomsett MA et al (2003) Development of PCR assays to tri7 and tri13 trichothecene biosynthetic and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol 62:355–367

    Article  CAS  Google Scholar 

  2. Nicholson P, Simpson DR, Wilson AH et al (2004) Detection and differentiation of trichothecene and enniatin-producing Fusarium species on small-grain cereals. Eur J Plant Pathol 110:503–514

    Article  CAS  Google Scholar 

  3. Ward E, Foster SJ, Fraaije BA et al (2004) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16

    Article  CAS  Google Scholar 

  4. Miedaner T, Cumagun CJR, Chakraborty S (2008) Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. J Phytopathol 156:129–139

    Article  Google Scholar 

  5. Yli-Mattila T, Paavanen-Huhtala S, Parikka P et al (2004) Toxigenic fungi and mycotoxins in Finnish cereals. In: Logrieco A, Visconti A (eds) An overview on toxigenic fungi and mycotoxins in Europe. Kluwer Academic Publishers, The Netherlands, pp 83–100

    Chapter  Google Scholar 

  6. Chamberlain JS, Gibbs RA, Rainer JE et al (1998) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16(23):11141–11156

    Article  Google Scholar 

  7. Edwards MC, Gibbs RA (1994) Multiplex PCR: advantages, development, and applications. Genome Res 3:65–75

    Article  Google Scholar 

  8. Henegariu O, Heerema NA, Dlouhy SR et al (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23(3):504–511

    CAS  PubMed  Google Scholar 

  9. Chandra NS, Wulff EG, Udayashankar AC et al (2011) Prospects of molecular markers in Fusarium species diversity. Appl Microbiol Biotechnol 90:1625–1639

    Article  PubMed  Google Scholar 

  10. Ramana MV, Shilpa P, Balakrishna K et al (2013) Incidence and multiplex PCR based detection of trichothecene producing Fusarium culmorum isolated from maize and Paddy samples collected from India. Braz J Microbiol 44:401–406

    Article  Google Scholar 

  11. Hohn TM, McCormick SP, Desjardin AE (1993) Evidence of a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr Genet 24:291–295

    Article  CAS  PubMed  Google Scholar 

  12. Kimura M, Tokai T, Donnell KO et al (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEB Lett 27:105–110

    Article  Google Scholar 

  13. Niessen ML, Vogel RF (1998) Group specific PCR-detection of potential trichothecene-producing Fusarium-species in pure cultures and cereal samples. Syst Appl Microbiol 21:618–631

    Article  CAS  PubMed  Google Scholar 

  14. Agodi A, Barchitta M, Ferrante M et al (2005) Detection of trichothecene producing Fusarium spp. by PCR: adaptation, validation and application to fast food. Ital J Public Health 3:7–11

    Google Scholar 

  15. Demeke T, Clear RM, Patrick SK et al (2005) Species specific PCR based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. Int J Food Microbiol 103:271–284

    Article  CAS  PubMed  Google Scholar 

  16. Bluhm BH, Flaherty JE, Cousin MA et al (2002) Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal. J Food Prot 65:1955–1961

    Article  CAS  PubMed  Google Scholar 

  17. Lee T, Oh DW, Kim HS et al (2001) Identification of deoxynivelenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 67:2966–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waalwijk C, van der Lee T, de Vries I et al (2004) Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. Eur J Plant Pathol 110:533–544

    Article  CAS  Google Scholar 

  19. Ramana MV, Balakrishna K, Murali HS et al (2011) Multiplex PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in rice and finger millet collected from southern India. J Sci Food Agric 91:1666–1673

    Article  CAS  PubMed  Google Scholar 

  20. Waalwijk C, Kastelein P, de Vries I et al (2003) Major changes in Fusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109:743–754

    Article  CAS  Google Scholar 

  21. Kerényi ZA, Moretti C, Waalwijk B et al (2004) Mating type sequences in asexually reproducing Fusarium species. Appl Environ Microbiol 70:4419–4423

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brandfass C, Karlovsky P (2006) Simultaneous detection of Fusarium culmorum and Fusarium graminearum in plant material by duplex PCR with melting curve analysis. BMC Microbiol 6:1–10

    Article  Google Scholar 

  23. Quarta A, Mita G, Haidukowski M et al (2006) Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. FEMS Microbiol Lett 259(1):7–13

    Article  CAS  PubMed  Google Scholar 

  24. Yli-Mattila T, Paavanen-Huhtala S, Parikka P et al (2004) Molecular and morphological diversity of Fusarium species in Finland and northwestern Russia. Eur J Plant Pathol 110:573–585

    Article  CAS  Google Scholar 

  25. Yli-Mattila T, Paavanen-Huhtala S, Jestoi M et al (2008) Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch Phytopathol Plant Protect 41:243–260

    Article  CAS  Google Scholar 

  26. Schilling AG, Möller EM, Geiger HH (1996) Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum and F. aveneceaum. Mol Plant Pathol 86(5):515–522

    CAS  Google Scholar 

  27. Hue FX, Huerre M, Rouffault MA et al (1999) Specific detection of Fusarium species in blood and tissues by a PCR technique. J Clin Microbiol 37:2434–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jennings P, Coates ME, Turner JA et al (2004) Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol 53:182–190

    Article  CAS  Google Scholar 

  29. Ward TJ, Clear R, Rooney A et al (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484

    Article  PubMed  Google Scholar 

  30. Yli-Mattila T, Gagkaeva T, Ward TJ et al (2009) A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian far east. Mycologia 101:841–852

    Article  PubMed  Google Scholar 

  31. Davari M, Wei SH, Babay-Ahari A et al (2013) Geographic differences in trichothecene chemotypes of Fusarium graminearum in the Northwest and North of Iran. World Mycotoxin J 6:137–150

    Article  Google Scholar 

  32. Boutigny A-L, Ward TJ, Ballois N et al (2014) Diversity of the Fusarium graminearum species complex on French cereals. Eur J Plant Pathol 138:133–138

    Article  CAS  Google Scholar 

  33. Kumar S, Balakrishna K, Batra HV (2006) Detection of Salmonella enterica serovar Typhi (S. typhi) by selective amplification of invA, viaB, fliC-d and prt genes by polymerase chain reaction in multiplex format. Lett Appl Microbiol 42:149–154

    Article  CAS  PubMed  Google Scholar 

  34. O’Donnell K, Ward TJ, Aberra D et al (2008) Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet Biol 45:1514–1522

    Article  PubMed  Google Scholar 

  35. Sarver BAJ, Ward TJ, Gale LR et al (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48:1096–1107

    Article  PubMed  Google Scholar 

  36. Halstensen AS, Nordby KC, Eduard W et al (2006) Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J Environ Monit 8(12):1235–1241

    Article  CAS  PubMed  Google Scholar 

  37. Yli-Mattila T, Gavrilova O, Hussien T et al (2015) Identification of the first Fusarium sibiricum isolate in Iran and Fusarium langsethiae isolate in Siberia by morphology and species-specific primers. J Plant Pathol 97:183–187

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland (no. 52104), National Technology Agency of Finland (No. 40168/03), and the Nordic Research Board (No. 040291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapani Yli-Mattila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yli-Mattila, T., Nayaka, S.C., Venkataramana, M., Yörük, E. (2017). Multiplex Detection of Fusarium Species. In: Moretti, A., Susca, A. (eds) Mycotoxigenic Fungi. Methods in Molecular Biology, vol 1542. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6707-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6707-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6705-6

  • Online ISBN: 978-1-4939-6707-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics