Skip to main content

Recurrent Cytogenetic Abnormalities in Acute Myeloid Leukemia

  • Protocol
  • First Online:
Book cover Cancer Cytogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1541))

Abstract

The spectrum of chromosomal abnormality associated with leukemogenesis of acute myeloid leukemia (AML) is broad and heterogeneous when compared to chronic myeloid leukemia and other myeloid neoplasms. Recurrent chromosomal translocations such as t(8;21), t(15;17), and inv(16) are frequently detected, but hundreds of other uncommon chromosomal aberrations from AML also exist. This chapter discusses 22 chromosomal abnormalities that are common structural, numerical aberrations, and other important but infrequent (less than 1 %) translocations emphasized in the WHO classification. Brief morphologic, cytogenetic, and clinical characteristics are summarized, so as to provide a concise reference to cancer cytogenetic laboratories. Morphology based on FAB classification is used together with the current WHO classification due to frequent mentioning in a vast number of reference literatures. Characteristic chromosomal aberrations of other myeloid neoplasms such as myelodysplastic syndrome and myeloproliferative neoplasm will be discussed in separate chapters—except for certain abnormalities such as t(9;22) in de novo AML. Gene mutations detected in normal karyotype AML by cutting edge next generation sequencing technology are also briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arber DA, Vardiman JW, Brunning RD et al (2008) Acute myeloid leukemia and related precursor neoplasms. In: Swerdllow S, Campo E, Harris NL (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. IARC Press, France

    Google Scholar 

  2. Harrison CJ, Hills RK, Moorman AV et al (2010) Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J Clin Oncol 28(16):2674–2681

    Article  PubMed  Google Scholar 

  3. Grimwade D, Hills RK, Moorman A et al (2010) Refinement of cytogenetic classification in acute myeloid leukaemia: Determination of prognostic significance of rarer recurring chromosomal abnormalities amongst 5,876 younger adult patients treated in the UK Medical Research Council trials. In 50th Annual Scientific Meeting of the British Society for Haematology, Edinburgh, UK. Br J Haematol S1:17. doi:10.1111/j.1365-2141.2010.08116.x

    Google Scholar 

  4. Berger R, Bernheim A, Daniel MT et al (1982) Cytologic characterization and significance of normal karyotypes in t(8; 21) acute myeloblastic leukemia. Blood 59(1):171–178

    CAS  PubMed  Google Scholar 

  5. Farra C, Awwad J, Valent A et al (2004) Complex translocation (8;12;21): a new variant of t(8;21) in acute myeloid leukemia. Cancer Genet Cytogenet 155(2):138–142

    Article  CAS  PubMed  Google Scholar 

  6. Miyoshi H, Kozu T, Shimizu K et al (1993) The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 12(7):2715

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohki M (1993) Molecular basis of the t(8;21) translocation in acute myeloid leukaemia. Semin Cancer Biol 6:369–375

    Google Scholar 

  8. Hatlen MA, Wang L, Nimer SD (2012) AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 6(3):248–262

    Article  PubMed  Google Scholar 

  9. Radtke I, Mullighan CG, Ishii M et al (2009) Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci U S A 106(31):12944–12949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Micol JB, Duployez N, Boissel N et al (2014) Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 124(9):1445–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park TS, Song J, Lee KA et al (2008) Paracentric inversion–associated t(8;21) variant in de novo acute myelogenous leukemia: characteristic patterns of conventional cytogenetics, FISH, and multicolor banding analysis. Cancer Genet Cytogenet 183(1):72–76

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Li Q, Li W et al (2013) Monitoring of minimal residual disease in acute myeloid leukemia with t(8;21)(q22;q22). Int J Hematol 97(6):786–792

    Article  CAS  PubMed  Google Scholar 

  13. Kim HJ, Ahn HK, Jung CW et al (2013) KIT D816 mutation associates with adverse outcomes in core binding factor acute myeloid leukemia, especially in the subgroup with RUNX1/RUNX1T1 rearrangement. Ann Hematol 92(2):163–171

    Article  CAS  PubMed  Google Scholar 

  14. Gustafson SA, Lin P, Chen SS et al (2009) Therapy-related acute myeloid leukemia with t (8; 21)(q22; q22) shares many features with de novo acute myeloid leukemia with t (8; 21)(q22; q22) but does not have a favorable outcome. Am J Clin Pathol 131(5):647–655

    Article  CAS  PubMed  Google Scholar 

  15. Marcucci G, Mrózek K, Ruppert AS et al (2005) Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t (8; 21) differ from those of patients with inv (16): a Cancer and Leukemia Group B study. J Clin Oncol 23(24):5705–5717

    Article  PubMed  Google Scholar 

  16. Warrell RP Jr, de The H, Wang ZY et al (1993) Acute promyelocytic leukemia. N Engl J Med 329(3):177–189

    Article  CAS  PubMed  Google Scholar 

  17. Huret J, Chomienne C (1998) t(15;17)(q22;q21). Atlas Genet Cytogenet Oncol Haematol 2(3):101–103. doi:10.4267/2042/37443

    Google Scholar 

  18. Kim MJ, Yang JJ, Meyer C et al (2012) Molecular methods for genomic analyses of variant PML-RARA or other RARA-related chromosomal translocations in acute promyelocytic leukemia. Korean J Hematol 47(4):307–308

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wan TS, So CC, Hui KC et al (2007) Diagnostic utility of dual fusion PML/RARα translocation DNA probe (D-FISH) in acute promyelocytic leukemia. Oncol Rep 17(4):799–805

    CAS  PubMed  Google Scholar 

  20. Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111(5):2505–2515

    Article  CAS  PubMed  Google Scholar 

  21. Kim MJ, Cho SY, Kim MH et al (2010) FISH-negative cryptic PML–RARA rearrangement detected by long-distance polymerase chain reaction and sequencing analyses: a case study and review of the literature. Cancer Genet Cytogenet 203(2):278–283

    Article  CAS  PubMed  Google Scholar 

  22. Hillestad LK (1957) Acute promyelocytic leukemia. Acta Med Scand 159(3):189–194

    Article  CAS  PubMed  Google Scholar 

  23. Arthur DC, Bloomfield CD (1983) Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association. Blood 61(5):994–998

    CAS  PubMed  Google Scholar 

  24. Le Beau MM, Larson RA, Bitter MA et al (1983) Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia: a unique cytogenetic–clinicopathological association. N Engl J Med 309(11):630–636

    Article  PubMed  Google Scholar 

  25. Schlenk RF, Benner A, Krauter J et al (2004) Individual patient data–based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 22(18):3741–3750

    Article  CAS  PubMed  Google Scholar 

  26. Claxton D, Liu P, Hsu H et al (1994) Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia. Blood 83(7):1750–1756

    CAS  PubMed  Google Scholar 

  27. Park TS, Lee ST, Song J et al (2009) Detection of a novel CBFB/MYH11 variant fusion transcript (K-type) showing partial insertion of exon 6 of CBFB gene using two commercially available multiplex RT-PCR kits. Cancer Genet Cytogenet 189(2):87–92

    Article  CAS  PubMed  Google Scholar 

  28. Schwind S, Edwards CG, Nicolet D et al (2013) inv(16)/t(16;16) acute myeloid leukemia with non–type A CBFB-MYH11 fusions associate with distinct clinical and genetic features and lack KIT mutations. Blood 121(2):385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merchant SH, Haines S, Hall B et al (2004) Fluorescence in situ hybridization identifies cryptic t(16;16)(p13;q22) masked by del(16)(q22) in a case of AML-M4 Eo. J Mol Diagn 6(3):271–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marcucci G, Caligiuri MA, Bloomfield CD (2003) Core binding factor (CBF) acute myeloid leukemia: is molecular monitoring by RT–PCR useful clinically? Eur J Haematol 71(3):143–154

    Article  CAS  PubMed  Google Scholar 

  31. Schoch C, Schnittger S, Klaus M et al (2003) AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 102(7):2395–2402

    Article  CAS  PubMed  Google Scholar 

  32. Andersen MK, Johansson B, Larsen SO et al (1998) Chromosomal abnormalities in secondary MDS and AML. Relationship to drugs and radiation with specific emphasis on the balanced rearrangements. Haematologica 83(6):483–488

    CAS  PubMed  Google Scholar 

  33. Cimino G, Rapanotti MC, Elia L et al (1995) ALL-1 gene rearrangements in acute myeloid leukemia: association with M4–M5 French-American-British classification subtypes and young age. Cancer Res 55(8):1625–1628

    CAS  PubMed  Google Scholar 

  34. Balgobind BV, Raimondi SC, Harbott J et al (2009) Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 114(12):2489–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyer C, Hofmann J, Burmeister T et al (2013) The MLL recombinome of acute leukemias in 2013. Leukemia 27(11):2165–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marschalek R (2011) Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol 152(2):141–154

    Article  CAS  PubMed  Google Scholar 

  37. Meyer C, Schneider B, Reichel M et al (2005) Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci U S A 102(2):449–454

    Article  CAS  PubMed  Google Scholar 

  38. Dyson MJ, Talley PJ, Reilly JT et al (2003) Detection of cryptic MLL insertions using a commercial dual-color fluorescence in situ hybridization probe. Cancer Genet Cytogenet 147(1):81–83

    Article  CAS  PubMed  Google Scholar 

  39. Balgobind B, Zwaan C, Pieters R et al (2011) The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia 25(8):1239–1248

    Article  CAS  PubMed  Google Scholar 

  40. Stone RM, DeAngelo DJ, Klimek V et al (2005) Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105(1):54–60

    Article  CAS  PubMed  Google Scholar 

  41. Wong P, Iwasaki M, Somervaille TC et al (2007) Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 21(21):2762–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitelman F, Johansson B, Mertens F (2016) Mitelman database of chromosome aberrations and gene fusions in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman. Accessed 1 Jan 2016

    Google Scholar 

  43. Johansson B, Harrison CJ (2015) Acute myeloid leukemia. In: Heim S, Mitelman F (eds) Cancer cytogenetics: chromosomal and molecular genetic aberrations of tumor cells, 4th edn. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  44. Moir D, Jones P, Pearson J et al (1984) A new translocation, t(1;3)(p36;q21), in myelodysplastic disorders. Blood 64(2):553–555

    CAS  PubMed  Google Scholar 

  45. Bloomfield CD, Garson O, Volin L et al (1985) t(1;3)(p36;q21) in acute nonlymphocytic leukemia: a new cytogenetic-clinicopathologic association. Blood 66(6):1409–1413

    CAS  PubMed  Google Scholar 

  46. Lim G, Kim MJ, Oh SH et al (2010) Acute myeloid leukemia associated with t(1;3)(p36;q21) and extreme thrombocytosis: a clinical study with literature review. Cancer Genet Cytogenet 203(2):187–192

    Article  CAS  PubMed  Google Scholar 

  47. Welborn JL, Lewis JP, Jenks H et al (1987) Diagnostic and prognostic significance of t (1; 3)(p36; q21) in the disorders of hematopoiesis. Cancer Genet Cytogenet 28(2):277–285

    Article  CAS  PubMed  Google Scholar 

  48. Bruyère H (2015) der(1;7)(q10;p10). In: Chronic Myeloproliferative Diseases (MPD). Atlas of genetics and cytogenetics in oncology and haematology. INIST. http://AtlasGeneticsOncology.org/Anomalies/t0107ID1003.html. Accessed 1 Jan 2016

  49. Westman M, Pedersen-Bjergaard J, Andersen M et al (2013) IDH1 and IDH2 mutations in therapy-related myelodysplastic syndrome and acute myeloid leukemia are associated with a normal karyotype and with der(1;7)(q10;p10). Leukemia 27(4):957–959

    Article  CAS  PubMed  Google Scholar 

  50. Arthur DC (1984) Abnormalities of chromosome 22. Cancer Genet Cytogenet 11(3):316–318. doi:10.1016/S0165-4608(84)80018-7

    Article  Google Scholar 

  51. Ma Z, Morris SW, Valentine V et al (2001) Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 28(3):220–221

    Article  CAS  PubMed  Google Scholar 

  52. Mercher T, Busson-Le Coniat M, Monni R et al (2001) Involvement of a human gene related to the Drosophila spen gene in the recurrent t (1; 22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci U S A 98(10):5776–5779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoneda-Kato N, Look AT, Kirstein MN et al (1996) The t(3;5)(q25. 1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12(2):265–275

    CAS  PubMed  Google Scholar 

  54. Lim G, Choi JR, Kim MJ et al (2010) Detection of t (3; 5) and NPM1/MLF1 rearrangement in an elderly patient with acute myeloid leukemia: clinical and laboratory study with review of the literature. Cancer Genet Cytogenet 199(2):101–109

    Article  CAS  PubMed  Google Scholar 

  55. Aypar U, Knudson RA, Pearce KE et al (2014) Development of an NPM1/MLF1 D-FISH probe set for the detection of t(3;5)(q25;q35) identified in patients with acute myeloid leukemia. J Mol Diagn 16(5):527–532

    Article  CAS  PubMed  Google Scholar 

  56. Massaad L, Prieur M, Leonard C et al (1990) Biclonal chromosome evolution of chronic myelomonocytic leukemia in a child. Cancer Genet Cytogenet 44(1):131–137

    Article  CAS  PubMed  Google Scholar 

  57. Peeters P, Wlodarska I, Baens M et al (1997) Fusion of ETV6 to MDS1/EVI1 as a result of t (3; 12)(q26; p13) in myeloproliferative disorders. Cancer Res 57(4):564–569

    CAS  PubMed  Google Scholar 

  58. Wang XI, Lu X, Zhao L et al. (2014) Myeloid neoplasms associated with t(3;12)(q26.2;p13) are clinically aggressive and frequently harbor FLT3 mutations: a report of 8 cases and review of literature. J Leuk (Los Angels) 2:161. doi:10.4172/2329-6917.1000161

  59. Rubin CM, Larson RA, Anastasi J et al (1990) t(3;21)(q26;q22): a recurring chromosomal abnormality in therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood 76(12):2594–2598

    CAS  PubMed  Google Scholar 

  60. Lugthart S, Gröschel S, Beverloo HB et al (2010) Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t (3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol 28(24):3890–3898

    Article  PubMed  Google Scholar 

  61. Li S, Yin CC, Medeiros LJ et al (2012) Myelodysplastic syndrome/acute myeloid leukemia with t(3;21)(q26.2;q22) is commonly a therapy-related disease associated with poor outcome. Am J Clin Pathol 138(1):146–152

    Article  CAS  PubMed  Google Scholar 

  62. Yin C, Cortes J, Barkoh B et al (2006) t(3;21)(q26;q22) in myeloid leukemia: an aggressive syndrome of blast transformation associated with hydroxyurea or antimetabolite therapy. Cancer 106(8):1730–1738

    Article  CAS  PubMed  Google Scholar 

  63. Maki K, Yamagata T, Mitani K (2008) Role of the RUNX1‐EVI1 fusion gene in leukemogenesis. Cancer Sci 99(10):1878–1883

    CAS  PubMed  Google Scholar 

  64. Park TS, Choi JR, Yoon SH et al (2008) Acute promyelocytic leukemia relapsing as secondary acute myelogenous leukemia with translocation t(3;21)(q26;q22) and RUNX1–MDS1–EVI1 fusion transcript. Cancer Genet Cytogenet 187(2):61–73

    Article  CAS  PubMed  Google Scholar 

  65. Rowley JD, Potter D (1976) Chromosomal banding patterns in acute nonlymphocytic leukemia. Blood 47(5):705–721

    CAS  PubMed  Google Scholar 

  66. Von Lindern M, Fornerod M, Van Baal S et al (1992) The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 12(4):1687–1697

    Article  Google Scholar 

  67. Oyarzo MP, Lin P, Glassman A et al (2004) Acute myeloid leukemia with t(6;9)(p23;q34) is associated with dysplasia and a high frequency of flt3 gene mutations. Am J Clin Pathol 122:348–358

    Article  CAS  PubMed  Google Scholar 

  68. Sandahl JD, Coenen EA, Forestier E et al (2014) t(6;9)(p22;q34)/DEK-NUP214 rearranged pediatric myeloid leukemia: an international study on 62 patients. haematologica. haematol. 2013.098517

    Google Scholar 

  69. Tomiyasu T, Sasaki M, Kondo K et al (1982) Chromosome banding studies in 106 cases of chronic myelogenous leukemia. Jpn J Hum Genet 27(3):243–258

    Article  CAS  Google Scholar 

  70. Sato Y, Abe S, Mise K et al (1987) Reciprocal translocation involving the short arms of chromosomes 7 and 11, t(7p-;11p+), associated with myeloid leukemia with maturation. Blood 70(5):1654–1658

    CAS  PubMed  Google Scholar 

  71. Borrow J, Shearman AM, Stanton VP et al (1996) The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 12(2):159–167

    Article  CAS  PubMed  Google Scholar 

  72. Nakamura T, Largaespada DA, Lee MP et al (1996) Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 12(2):154–158

    Article  CAS  PubMed  Google Scholar 

  73. Chou W, Chen C, Hou H et al (2009) Acute myeloid leukemia bearing t(7;11)(p15;p15) is a distinct cytogenetic entity with poor outcome and a distinct mutation profile: comparative analysis of 493 adult patients. Leukemia 23(7):1303–1310

    Article  CAS  PubMed  Google Scholar 

  74. Wei S, Wang S, Qiu S et al (2013) Clinical and laboratory studies of 17 patients with acute myeloid leukemia harboring t (7; 11)(p15; p15) translocation. Leuk Res 37(9):1010–1015

    Article  CAS  PubMed  Google Scholar 

  75. Soupir CP, Vergilio JA, Dal Cin P et al (2007) Philadelphia chromosome–positive acute myeloid leukemia. Am J Clin Pathol 127(4):642–650. doi:10.1309/B4NVER1AJJ84CTUU

    Article  PubMed  Google Scholar 

  76. Konoplev S, Yin CC, Kornblau SM et al (2013) Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma 54(1):138–144

    Article  CAS  PubMed  Google Scholar 

  77. Nacheva EP, Grace CD, Brazma D et al (2013) Does BCR/ABL1 positive acute myeloid leukaemia exist? Br J Haematol 161(4):541–550

    Article  CAS  PubMed  Google Scholar 

  78. Shimizu H, Yokohama A, Hatsumi N et al (2014) Philadelphia chromosome‐positive mixed phenotype acute leukemia in the imatinib era. Eur J Haematol 93(4):297–301

    Article  CAS  PubMed  Google Scholar 

  79. Mecucci C, Bosly A, Michaux JL et al (1985) Acute nonlymphoblastic leukemia with bone marrow eosinophilia and structural anomaly of chromosome 16. Cancer Genet Cytogenet 17(4):359–363

    Article  CAS  PubMed  Google Scholar 

  80. Kim J, Park TS, Song J et al (2009) Detection of FUS–ERG chimeric transcript in two cases of acute myeloid leukemia with t (16; 21)(p11. 2; q22) with unusual characteristics. Cancer Genet Cytogenet 194(2):111–118

    Article  CAS  PubMed  Google Scholar 

  81. Jekarl DW, Kim M, Lim J et al (2010) CD56 antigen expression and hemophagocytosis of leukemic cells in acute myeloid leukemia with t(16;21)(p11;q22). Int J Hematol 92(2):306–313

    Article  CAS  PubMed  Google Scholar 

  82. Fichelson S, Dreyfus F, Berger R et al (1992) Evi-1 expression in leukemic patients with rearrangements of the 3q25-q28 chromosomal region. Leukemia 6(2):93–99

    CAS  PubMed  Google Scholar 

  83. Suzukawa K, Parganas E, Gajjar A et al (1994) Identification of a breakpoint cluster region 3′of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood 84(8):2681–2688

    CAS  PubMed  Google Scholar 

  84. Peniket A, Wainscoat J, Side L et al (2005) Del (9q) AML: clinical and cytological characteristics and prognostic implications. Br J Haematol 129(2):210–220

    Article  PubMed  Google Scholar 

  85. Fröhling S, Schlenk RF, Krauter J et al (2005) Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss‐of‐function mutations. Genes Chromosomes Cancer 42(4):427–432

    Article  PubMed  CAS  Google Scholar 

  86. Soenen-Cornu V, Preudhomme C, Laï JL et al (1999) del(17p) in myeloid malignancies. Atlas Genet Cytogenet Oncol Haematol 3(4):198–201. doi:10.4267/2042/37563

    Google Scholar 

  87. Heim S, Mitelman F (1992) Cytogenetic analysis in the diagnosis of acute leukemia. Cancer 70(S4):1701–1709

    Article  CAS  PubMed  Google Scholar 

  88. Paulsson K, Säll T, Fioretos T et al (2001) The incidence of trisomy 8 as a sole chromosomal aberration in myeloid malignancies varies in relation to gender, age, prior iatrogenic genotoxic exposure, and morphology. Cancer Genet Cytogenet 130(2):160–165

    Article  CAS  PubMed  Google Scholar 

  89. Johansson B, Mertens F, Mitelman F (1994) Secondary chromosomal abnormalities in acute leukemias. Leukemia 8(6):953–962

    CAS  PubMed  Google Scholar 

  90. Hrusak O, Porwit-MacDonald A (2002) Antigen expression patterns reflecting genotype of acute leukemias. Leukemia 16(7):1233–1258

    Article  CAS  PubMed  Google Scholar 

  91. Paulsson K, Johansson B (2007) Trisomy 8 as the sole chromosomal aberration in acute myeloid leukemia and myelodysplastic syndromes. Pathol Biol (Paris) 55(1):37–48

    Article  CAS  Google Scholar 

  92. Paulsson K, Heidenblad M, Strömbeck B et al (2006) High-resolution genome-wide array-based comparative genome hybridization reveals cryptic chromosome changes in AML and MDS cases with trisomy 8 as the sole cytogenetic aberration. Leukemia 20(5):840–846

    Article  CAS  PubMed  Google Scholar 

  93. Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 92(7):2322–2333

    CAS  PubMed  Google Scholar 

  94. Alseraye FM, Zuo Z, Bueso-Ramos C et al (2011) Trisomy 11 as an isolated abnormality in acute myeloid leukemia is associated with unfavorable prognosis but not with an NPM1 or KIT mutation. Int J Clin Exp Pathol 4(suppl 4):371–377

    PubMed  PubMed Central  Google Scholar 

  95. Desangles F (1997) +11 or trisomy 11 (solely). Atlas Genet Cytogenet Oncol Haematol 1(1):12. doi:10.4267/2042/32025

    Google Scholar 

  96. Lee R, Dal CP (2012) +13 or trisomy 13. Atlas Genet Cytogenet Oncol Haematol 16(8):572–573. doi:10.4267/2042/47494

    Google Scholar 

  97. Mehta A, Bain B, Fitchett M et al (1998) Trisomy 13 and myeloid malignancy-characteristic blast cell morphology: a United Kingdom Cancer Cytogenetics Group survey. Br J Haematol 101(4):749–752

    Article  CAS  PubMed  Google Scholar 

  98. Cortes J, Kantarjian H, O’Brien S et al (1995) Clinical and prognostic significance of trisomy 21 in adult patients with acute myelogenous leukemia and myelodysplastic syndromes. Leukemia 9(1):115–117

    CAS  PubMed  Google Scholar 

  99. Yamamoto K, Nagata K, Hamaguchi H (2002) A new case of CD7-positive acute myeloblastic leukemia with trisomy 21 as a sole acquired abnormality. Cancer Genet Cytogenet 133(2):183–184

    Article  PubMed  Google Scholar 

  100. Larsson N, Lilljebjörn H, Lassen C et al (2012) Myeloid malignancies with acquired trisomy 21 as the sole cytogenetic change are clinically highly variable and display a heterogeneous pattern of copy number alterations and mutations. Eur J Haematol 88(2):136–143

    Article  CAS  PubMed  Google Scholar 

  101. Wan TS, Au WY, Chan JC et al (1999) Trisomy 21 as the sole acquired karyotypic abnormality in acute myeloid leukemia and myelodysplastic syndrome. Leuk Res 23(11):1079–1083

    Article  CAS  PubMed  Google Scholar 

  102. Paschka P, Du J, Schlenk RF et al (2013) Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG). Blood 121(1):170–177

    Article  CAS  PubMed  Google Scholar 

  103. Xu W, Zhou HF, Fan L et al (2008) Trisomy 22 as the sole abnormality is an important marker for the diagnosis of acute myeloid leukemia with inversion 16. Onkologie 31(8-9):440–444

    Article  PubMed  Google Scholar 

  104. Smith ML, Cavenagh JD, Lister TA et al (2004) Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 351(23):2403–2407

    Article  CAS  PubMed  Google Scholar 

  105. Bullinger L, Döhner K, Bair E et al (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350(16):1605–1616

    Article  CAS  PubMed  Google Scholar 

  106. Patel JP, Gönen M, Figueroa ME et al (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366(12):1079–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2014R1A1A1002797). Dr. Claus Meyer kindly reviewed for 11q23 abnormality of chapter and Dr. Wall Meaghan provided the t(3;12)(q26;p13) partial karyotype shown in Fig. 8. We thank Jin-A Choi for her excellent technical support in the cytogenetics laboratory of Kyung Hee University Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Sung Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yang, J.J., Park, T.S., Wan, T.S.K. (2017). Recurrent Cytogenetic Abnormalities in Acute Myeloid Leukemia. In: Wan, T. (eds) Cancer Cytogenetics. Methods in Molecular Biology, vol 1541. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6703-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6703-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6701-8

  • Online ISBN: 978-1-4939-6703-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics