Skip to main content

Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity

  • Protocol
  • First Online:
Synapse Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1538))

Abstract

Current large-scale approaches in neuroscience aim to unravel the complete connectivity map of specific neuronal circuits, or even the entire brain. This emerging research discipline has been termed connectomics. Recombinant glycoprotein-deleted rabies virus (RABV ∆G) has become an important tool for the investigation of neuronal connectivity in the brains of a variety of species. Neuronal infection with even a single RABV ∆G particle results in high-level transgene expression, revealing the fine-detailed morphology of all neuronal features—including dendritic spines, axonal processes, and boutons—on a brain-wide scale. This labeling is eminently suitable for subsequent post-hoc morphological analysis, such as semiautomated reconstruction in 3D. Here we describe the use of a recently developed anterograde RABV ∆G variant together with a retrograde RABV ∆G for the investigation of projections both to, and from, a particular brain region. In addition to the automated reconstruction of a dendritic tree, we also give as an example the volume measurements of axonal boutons following RABV ∆G-mediated fluorescent marker expression. In conclusion RABV ∆G variants expressing a combination of markers and/or tools for stimulating/monitoring neuronal activity, used together with genetic or behavioral animal models, promise important insights in the structure–function relationship of neural circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wickersham IR, Finke S, Conzelmann K-K, Callaway EM (2007) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4:47–49

    Article  CAS  PubMed  Google Scholar 

  2. Haberl MG, Viana da Silva S, Guest JM et al. (2015) An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology. Brain Struct Funct 220:1369. doi:10.1007/s00429-014-0730-z.

  3. Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK (1996) Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci U S A 93:7310–7314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ginger M, Haberl M, Conzelmann K-K, Schwarz MK, Frick A (2013) Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits 7:2

    PubMed  PubMed Central  Google Scholar 

  5. Ginger M, Bony G, Haberl MG, Frick A (2015). Use of rhabdoviruses to study neural circuitry. In: Pattnaik AK, Witt MA (eds), Biology and pathogenesis of rhabdo- and filoviruses, 1st edn. Chapter 11, pages: 263–287

    Google Scholar 

  6. Paxinos G, Franklin KBJ (2008) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  7. Cetin A, Komai S, Eliava M, Seeburg PH, Osten P (2007) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1:3166–3173

    Article  Google Scholar 

  8. Gerfen CR (2003) Basic neuroanatomical methods. Curr Protoc Neurosci Chapter 1:Unit 1.1

    PubMed  Google Scholar 

  9. Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71:617–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Jüttner J, Noda M, Neve RL, Conzelmann K-K, Roska B (2013) The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 79:1078–1085

    Article  CAS  PubMed  Google Scholar 

  11. Wickersham IR, Sullivan HA, Seung HS (2013) Axonal and subcellular labelling using modified rabies viral vectors. Nat Commun 4:2332

    Article  PubMed  Google Scholar 

  12. Wickersham IR, Sullivan HA, Seung HS (2010) Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat Protoc 5:595–606

    Article  CAS  PubMed  Google Scholar 

  13. Osakada F, Callaway EM (2013) Design and generation of recombinant rabies virus vectors. Nat Protoc 8:1583–1601

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ghanem A, Kern A, Conzelmann K-K (2012) Significantly improved rescue of rabies virus from cDNA plasmids. Eur J Cell Biol 91:10–16

    Article  CAS  PubMed  Google Scholar 

  15. Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71

    Article  CAS  PubMed  Google Scholar 

  16. Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J, Arganda-Carreras I, Kim Y, Seung HS, Osten P (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dodt H-U, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgänsberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336

    Article  CAS  PubMed  Google Scholar 

  18. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Yokoyama C, Onoe H, Eguchi M, Yamaguchi S, Abe T, Kiyonari H, Shimizu Y, Miyawaki A, Yokota H, Ueda HR (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739

    Article  CAS  PubMed  Google Scholar 

  19. Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ginger M, Broser P, Frick A (2013) Three-dimensional tracking and analysis of ion channel signals across dendritic arbors. Front Neural Circuits 7:61

    PubMed  PubMed Central  Google Scholar 

  21. Parekh R, Ascoli GA (2013) Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 77:1017–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dercksen VJ, Hege H-C, Oberlaender M (2014) The filament editor: an interactive software environment for visualization, proof-editing and analysis of 3D neuron morphology. Neuroinformatics 12:325–339

    Article  PubMed  Google Scholar 

  23. Xiao H, Peng H (2013) APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics 29:1448–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Frick Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Haberl, M.G., Ginger, M., Frick, A. (2017). Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity. In: Poulopoulos, A. (eds) Synapse Development. Methods in Molecular Biology, vol 1538. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6688-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6688-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6686-8

  • Online ISBN: 978-1-4939-6688-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics