Skip to main content

Imaging Activity-Dependent Signaling Dynamics at the Neuronal Synapse Using FRET-Based Biosensors

  • Protocol
  • First Online:
Synapse Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1538))

  • 3937 Accesses

Abstract

In this chapter, we introduce the combined use of FRET-based biosensors and synaptic markers as an effective tool for studying intracellular signaling pathways in small synaptic terminals of neuronal cells. The approach is based on the unmixing of excitation/emission spectral fingerprints of a FRET donor and acceptor pair, as well as a lipophilic styryl dye, FM1-43, loaded into presynaptic terminals. The destaining of FM1-43 during evoked release provides a map to guide the sampling of fluorescence for FRET analysis. In the example presented here, we measure the temporal dynamics of cAMP at the presynaptic terminal using an intramolecular CFP/YFP-based FRET sensor. However, this methodology can be applied to investigate the spatial and temporal regulation of a variety of signaling processes, as well as dynamic changes in protein–protein interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neher E (2010) What is rate-limiting during sustained synaptic activity: vesicle supply or the availability of release sites. Front Synaptic Neurosci 2:144

    Article  PubMed  PubMed Central  Google Scholar 

  2. Habets RLP, Borst JGG (2007) Dynamics of the readily releasable pool during post-tetanic potentiation in the rat calyx of held synapse. J Physiol 581:467–478

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beierlein M, Fioravante D, Regehr WG (2007) Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity. Neuron 54:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee S-JR, Escobedo-Lozoya Y, Szatmari EM et al (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaneko M, Takahashi T (2004) Presynaptic mechanism underlying cAMP-dependent synaptic potentiation. J Neurosci 24:5202–5208

    Article  CAS  PubMed  Google Scholar 

  8. Yao L, Sakaba T (2010) cAMP modulates intracellular Ca2+ sensitivity of fast-releasing synaptic vesicles at the calyx of held synapse. J Neurophysiol 104:3250–3260

    Article  CAS  PubMed  Google Scholar 

  9. Beaumont V, Zucker RS (2000) Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic I h channels. Nat Neurosci 3:133–141

    Article  CAS  PubMed  Google Scholar 

  10. Degtyar V, Hafez IM, Bray C et al (2013) Dance of the SNAREs: assembly and rearrangements detected with FRET at neuronal synapses. J Neurosci 33:5507–5523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  CAS  PubMed  Google Scholar 

  12. Karra D, Dahm R (2010) Transfection techniques for neuronal cells. J Neurosci 30:6171–6177

    Article  CAS  PubMed  Google Scholar 

  13. Jiang M, Chen G (2006) High Ca 2+-phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695–700

    Article  CAS  PubMed  Google Scholar 

  14. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33:156

    Article  PubMed  Google Scholar 

  16. Wlodarczyk J, Woehler A, Kobe F et al (2008) Analysis of FRET signals in the presence of free donors and acceptors. Biophys J 94:986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Woehler A (2013) Simultaneous quantitative live cell imaging of multiple FRET-based biosensors. PLoS One 8:e61096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woehler A, Wlodarczyk J, Neher E (2010) Signal/noise analysis of FRET-based sensors. Biophys J 99:2344–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ponsioen B, Zhao J, Riedl J et al (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mironov SL, Skorova E, Taschenberger G et al (2009) Imaging cytoplasmic cAMP in mouse brainstem neurons. BMC Neurosci 10:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kavalali ET, Jorgensen EM (2014) Visualizing presynaptic function. Nat Neurosci 17:10–16

    Article  CAS  PubMed  Google Scholar 

  22. Renner U, Zeug A, Woehler A et al (2012) Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J Cell Sci 125:2486–2499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank KunHan Lin for invaluable comments on the protocol and I. Herfort for the technical assistance. This work was funded in part by the Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Woehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Farsi, Z., Woehler, A. (2017). Imaging Activity-Dependent Signaling Dynamics at the Neuronal Synapse Using FRET-Based Biosensors. In: Poulopoulos, A. (eds) Synapse Development. Methods in Molecular Biology, vol 1538. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6688-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6688-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6686-8

  • Online ISBN: 978-1-4939-6688-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics