Skip to main content

Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microcopy Imaging of Single Stimulated Synapses

  • Protocol
  • First Online:
Synapse Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1538))

Abstract

Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.

These two authors contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosch M, Hayashi Y (2011) Structural plasticity of dendritic spines. Curr Opin Neurobiol 22:1–6

    Google Scholar 

  2. Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amatrudo JM, Olson JP, Agarwal HK et al (2014) Caged compounds for multichromic optical interrogation of neural systems. Eur J Neurosci 41:5–16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nägerl UV, Willig KI, Hein B et al (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105:18982–18987

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tønnesen J, Nägerl UV (2013) Superresolution imaging for neuroscience. Exp Neurol 242:33–40

    Article  PubMed  Google Scholar 

  6. Chéreau R, Tønnesen J, Nägerl UV (2015) STED microscopy for nanoscale imaging in living brain slices. Methods 88:57–66

    Article  PubMed  Google Scholar 

  7. Sigrist SJ, Sabatini BL (2012) Optical super-resolution microscopy in neurobiology. Curr Opin Neurobiol 22:86–93

    Article  CAS  PubMed  Google Scholar 

  8. Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 4:7

    Article  Google Scholar 

  9. Marx V (2013) Brain Mapping in high resolution. Nature 503:147–152

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka J-i (2005) Number and density of AMPA receptors in single synapses in immature cerebellum. J Neurosci 25:799–807

    Article  CAS  PubMed  Google Scholar 

  11. Bishop D, Nikić I, Brinkoetter M et al (2011) Near-infrared branding efficiently correlates light and electron microscopy. Nat Methods 8:568–570

    Article  CAS  PubMed  Google Scholar 

  12. Bosch M, Castro J, Saneyoshi T et al (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:444–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castro J, Bosch M, Hayashi Y et al (2009) Ultrastructural reorganization after long-term potentiation at a single dendritic spine. Poster communication at Neuroscience Meeting. Society for Neuroscience, Chicago, IL

    Google Scholar 

  14. Bosch M, Castro J, Narayanan R et al (2009) Structural and molecular reorganization of a single dendritic spine during long-term potentiation. Poster communication at Neuroscience Meeting. Society for Neuroscience, Chicago, IL

    Google Scholar 

  15. Nägerl UV, Köstinger G, Anderson JC et al (2007) Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons. J Neurosci 27:8149–8156

    Article  PubMed  Google Scholar 

  16. Zito K, Knott G, Shepherd GMG et al (2004) Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44:321–334

    Article  CAS  PubMed  Google Scholar 

  17. Knott GW, Holtmaat A, Trachtenberg JT et al (2009) A protocol for preparing GFP-labeled neurons previously imaged in vivo and in slice preparations for light and electron microscopic analysis. Nat Protoc 4:1145–1156

    Article  CAS  PubMed  Google Scholar 

  18. Chen JL, Lin WC, Cha JW et al (2011) Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat Neurosci 14:587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Monosov EZ, Wenzel TJ, Lüers GH et al (1996) Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells. J Histochem Cytochem 44:189–581

    Article  Google Scholar 

  20. Grabenbauer M, Geerts WJC, Fernadez-Rodriguez J et al (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862

    Article  CAS  PubMed  Google Scholar 

  21. Nikonenko I, Boda B, Alberi S et al (2005) Application of photoconversion technique for correlated confocal and ultrastructural studies in organotypic slice cultures. Microsc Res Tech 68:90–96

    Article  PubMed  Google Scholar 

  22. Bock DD, Lee W-CA, Kerlin AM et al (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84

    Article  CAS  PubMed  Google Scholar 

  25. Sochacki KA, Shtengel G, van Engelenburg SB et al (2014) Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat Methods 11:305–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Desmond NL, Levy WB (1986) Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J Comp Neurol 253:476–482

    Article  CAS  PubMed  Google Scholar 

  27. Ostroff LE, Fiala JC, Allwardt B et al (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35:535–545

    Article  CAS  PubMed  Google Scholar 

  28. Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82:430–443

    Article  CAS  PubMed  Google Scholar 

  29. Blazquez-Llorca L, Hummel E, Zimmerman H et al (2015) Correlation of two-photon in vivo imaging and FIB/SEM microscopy. J Microsc 259:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maco B, Cantoni M, Holtmaat A et al (2014) Semiautomated correlative 3D electron microscopy of in vivo-imaged axons and dendrites. Nat Protoc 9:1354–1366

    Article  CAS  PubMed  Google Scholar 

  31. Buchs PA, Stoppini L, Muller D (1993) Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures. Dev Brain Res 71:81–91

    Article  CAS  Google Scholar 

  32. Collin C, Miyaguchi K, Segal M (1997) Dendritic spine density and LTP induction in cultured hippocampal slices. J Neurophysiol 77:1614–1623

    CAS  PubMed  Google Scholar 

  33. Zafirov S, Heimrich B, Frotscher M (1994) Dendritic development of dentate granule cells in the absence of their specific extrinsic afferents. J Comp Neurol 345:472–480

    Article  CAS  PubMed  Google Scholar 

  34. Gähwiler B (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477

    Article  PubMed  Google Scholar 

  35. Muller D, Buchs PA, Stoppini L (1993) Time course of synaptic development in hippocampal organotypic cultures. Dev Brain Res 71:93–100

    Article  CAS  Google Scholar 

  36. De Simoni A, Griesinger CB, Edwards FA (2003) Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J Physiol 550:135–147

    Article  PubMed  PubMed Central  Google Scholar 

  37. Debanne D, Guérineau NC, Gähwiler BH et al (1995) Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. J Neurophysiol 73:1282–1294

    CAS  PubMed  Google Scholar 

  38. Washbourne P, McAllister AK (2002) Techniques for gene transfer into neurons. Curr Opin Neurobiol 12:566–573

    Article  CAS  PubMed  Google Scholar 

  39. Karra D, Dahm R (2010) Transfection techniques for neuronal cells. J Neurosci 30:6171–6177

    Article  CAS  PubMed  Google Scholar 

  40. Bolz J, Novak N, Götz M et al (1990) Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex. Nature 346:359–362

    Article  CAS  PubMed  Google Scholar 

  41. Molnár Z, Blakemore C (1991) Lack of regional specificity for connections formed between thalamus and cortex in coculture. Nature 351:475–477

    Article  PubMed  Google Scholar 

  42. Seidl AH, Rubel EW (2010) A simple method for multiday imaging of slice cultures. Microsc Res Tech 73:37–44

    PubMed  PubMed Central  Google Scholar 

  43. Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci U S A 104:16182–16187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hayashi MK, Tang C, Verpelli C et al (2009) The postsynaptic density proteins homer and shank form a polymeric network structure. Cell 137:159–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sala C, Futai K, Yamamoto K et al (2003) Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J Neurosci 23:6327–6337

    CAS  PubMed  Google Scholar 

  46. Nikolenko V, Nemet B, Yuste R (2003) A two-photon and second-harmonic microscope. Methods 30:3–15

    Article  CAS  PubMed  Google Scholar 

  47. Majewska A, Yiu G, Yuste R (2000) A custom-made two-photon microscope and deconvolution system. Pflugers Arch 441:398–408

    Article  CAS  PubMed  Google Scholar 

  48. Tsai PS, Nishimura N, Yoder EJ et al (2002) Principles, design and construction of a scanning microscope for in vitro and in vivo brain imaging. In: Frostig RD (ed) In vivo optical imaging of brain function. CRC Press, Boca Raton

    Google Scholar 

  49. Tsai PS, Kleinfeld D (2009) In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation principles and hardware realization. In: Frostig RD (ed) In vivo optical imaging of brain function. CRC Press, Boca Raton, pp 59–115

    Chapter  Google Scholar 

  50. Okamoto K-I, Nagai T, Miyawaki A et al (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112

    Article  CAS  PubMed  Google Scholar 

  51. Stoppini L, Buchs P-A, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto N, Kurotani T, Toyama K (1989) Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science 245:192–194

    Article  CAS  PubMed  Google Scholar 

  53. Gogolla N, Galimberti I, DePaola V et al (2006) Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nat Protoc 1:1165–1171

    Article  CAS  PubMed  Google Scholar 

  54. Koyama R, Muramatsu R, Sasaki T et al (2007) A low-cost method for brain slice cultures. J Pharmacol Sci 104:191–194

    Article  CAS  PubMed  Google Scholar 

  55. Soares C, Lee KFH, Cook D et al (2014) Patch-clamp methods and protocols. 1183:205–219

    Google Scholar 

  56. O’Brien JA, Lummis SCR (2006) Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat Protoc 1:977–981

    Article  PubMed  PubMed Central  Google Scholar 

  57. Woods G, Zito K (2008) Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J Vis Exp e675:3–6

    Google Scholar 

  58. Ehrengruber MU, Hennou S, Bueler H et al (2001) Gene transfer into neurons from hippocampal slices: comparison of recombinant Semliki Forest Virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol Cell Neurosci 17:855–871

    Article  CAS  PubMed  Google Scholar 

  59. Malinow R, Hayashi Y, Maletic-Savatic M et al (2010) Introduction of green fluorescent protein (GFP) into hippocampal neurons through viral infection. Cold Spring Harb Protoc 2010:pdb.prot5406

    Article  PubMed  PubMed Central  Google Scholar 

  60. Haas K, Sin W, Javaherian A et al (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29:583–591

    Article  CAS  PubMed  Google Scholar 

  61. Pagès S, Cane M, Randall J et al (2015) Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo. Front Neuroanat 9:36

    PubMed  PubMed Central  Google Scholar 

  62. Antkowiak M, Torres-Mapa ML, Witts EC et al (2013) Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation. Sci Rep 3:3281

    Article  PubMed  PubMed Central  Google Scholar 

  63. Barrett LE, Sul JY, Takano H et al (2006) Region-directed phototransfection reveals the functional significance of a dendritically synthesized transcription factor. Nat Methods 3:455–460

    Article  CAS  PubMed  Google Scholar 

  64. Matsuzaki M, Honkura N, Ellis-Davies GCR et al (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harvey CD, Svoboda K (2007) Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450:1195–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Steiner P, Higley MJ, Xu W et al (2008) Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60:788–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Govindarajan A, Israely I, Huang SY et al (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69:132–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee S-JR, Escobedo-Lozoya Y, Szatmari EM et al (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oh WC, Hill TC, Zito K (2013) Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening. Proc Natl Acad Sci 110:E305–E312

    Article  CAS  PubMed  Google Scholar 

  70. Holbro N, Grunditz A, Oertner TG (2009) Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses. Proc Natl Acad Sci 106:15055–15060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hayama T, Noguchi J, Watanabe S et al (2013) GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nat Neurosci 16:1409–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bozzola J, Russell L (1999) Specimen preparation for transmission electron microscopy. In: Bozzola J, Russell L (eds) Electron microscopy, 2nd edn. Jones & Bartlett Publishers, Sudbury, MA, pp 16–47

    Google Scholar 

  73. Harris KM, Perry E, Bourne J et al (2006) Uniform serial sectioning for transmission electron microscopy. J Neurosci 26:12101–12103

    Article  CAS  PubMed  Google Scholar 

  74. Hayat M (1985) Basic techniques for transmission electron microscopy. Cambridge University Press, Cambridge

    Google Scholar 

  75. Williams D, Carter B (1996) Transmission electron microscopy: a textbook for materials science. Plenum Press, New York

    Book  Google Scholar 

  76. Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. J Microsc 218:52–61

    Article  CAS  PubMed  Google Scholar 

  77. Tanaka J-i, Horiike Y, Matsuzaki M et al (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319:1683–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sajikumar S, Navakkode S, Frey JU (2005) Protein synthesis-dependent long-term functional plasticity: methods and techniques. Curr Opin Neurobiol 15:607–613

    Article  CAS  PubMed  Google Scholar 

  79. Osterweil EK, Krueger DD, Reinhold K et al (2010) Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci 30:15616–15627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hirokawa J, Sadakane O, Sakata S et al (2011) Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats. PLoS One 6, e25283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a “Beatriu de Pinós” fellowship (AGAUR, “Generalitat de Catalunya”), the FRAXA Foundation, a Marie Curie Reintegration Grant (H2020-MSCA-IF) (to M.B.), the “Fundación Caja Madrid” (to J.C.), the Anne Punzak Marcus Fund (to M.S.), RIKEN, a NIH grant (R01DA17310), a Grant-in-Aid for Scientific Research (A), and a Grant-in-Aid for Scientific Research on Innovative Area “Foundation of Synapse and Neurocircuit Pathology” from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Human Frontier Science Program, and The Key Recruitment Program of High-end Foreign Experts of the Administration of Foreign Experts Affairs of Guangdong Province (to Y.H.). Conflict of interest statement: Y.H. is partly supported by Takeda Pharmaceutical Co. Ltd. and Fujitsu Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bosch, M., Castro, J., Sur, M., Hayashi, Y. (2017). Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microcopy Imaging of Single Stimulated Synapses. In: Poulopoulos, A. (eds) Synapse Development. Methods in Molecular Biology, vol 1538. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6688-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6688-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6686-8

  • Online ISBN: 978-1-4939-6688-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics