Advertisement

Oral Biology pp 461-479 | Cite as

Proteomic Analysis of Dental Tissue Microsamples

  • Jonathan E. Mangum
  • Jew C. Kon
  • Michael J. HubbardEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1537)

Abstract

Improved understanding of dental enamel development will benefit not only dentistry but also biomedicine more generally. Rat and mouse models of enamel development are relatively well characterized and experimentally powerful. However, the diminutive size of murine teeth makes them difficult to study using standard proteomics approaches. Here, we describe gel-based proteomic methods that enable parallel quantification, identification, and functional characterization of proteins from developing rat and mouse teeth. These refined methods are applicable to other scarce samples including human enamel defects.

Key words

Microsample proteomics Dental development Enamel defects Rat and mouse models Ameloblast Sample preparation Gel electrophoresis Functional proteomics 

Notes

Acknowledgments

We thank Nicola McHugh for skilfully assisting with development of the 2DGE procedures described here. This work was supported by the Melbourne Research Unit for Facial Disorders, the National Health and Medical Research Council of Australia, and the Health Research Council of New Zealand.

References

  1. 1.
    Hubbard MJ (1996) Abundant calcium homeostasis machinery in rat dental enamel cells. Up-regulation of calcium store proteins during enamel mineralization implicates the endoplasmic reticulum in calcium transcytosis. Eur J Biochem 239:611–623CrossRefPubMedGoogle Scholar
  2. 2.
    Hubbard MJ (2000) Calcium transport across the dental enamel epithelium. Crit Rev Oral Biol Med 11:437–466CrossRefPubMedGoogle Scholar
  3. 3.
    Franklin IK, Winz RA, Hubbard MJ (2001) Endoplasmic reticulum Ca2 + -ATPase pump is up-regulated in calcium-transporting dental enamel cells: a non-housekeeping role for SERCA2b. Biochem J 358:217–224CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Turnbull CI, Looi K, Mangum JE, Meyer M, Sayer RJ, Hubbard MJ (2004) Calbindin independence of calcium transport in developing teeth contradicts the calcium ferry dogma. J Biol Chem 279:55850–55854CrossRefPubMedGoogle Scholar
  5. 5.
    Hubbard MJ, McHugh NJ (1995) Calbindin28kDa and calbindin30kDa (calretinin) are substantially localised in the particulate fraction of rat brain. FEBS Lett 374:333–337CrossRefPubMedGoogle Scholar
  6. 6.
    Hubbard MJ (1995) Calbindin28kDa and calmodulin are hyperabundant in rat dental enamel cells. Identification of the protein phosphatase calcineurin as a principal calmodulin target and of a secretion-related role for calbindin28kDa. Eur J Biochem 230:68–79CrossRefPubMedGoogle Scholar
  7. 7.
    Hubbard MJ, McHugh NJ (1996) Mitochondrial ATP synthase F1-beta-subunit is a calcium-binding protein. FEBS Lett 391:323–329CrossRefPubMedGoogle Scholar
  8. 8.
    Hubbard MJ (1998) Enamel cell biology. Towards a comprehensive biochemical understanding. Connect Tissue Res 38:17–32CrossRefPubMedGoogle Scholar
  9. 9.
    Hubbard MJ (1998) Proteomic analysis of enamel cells from developing rat teeth: big returns from a small tissue. Electrophoresis 19:1891–1900CrossRefPubMedGoogle Scholar
  10. 10.
    Sayer RJ, Turnbull CI, Hubbard MJ (2000) Calbindin28kDa is specifically associated with extranuclear constituents of the dense particulate fraction. Cell Tissue Res 302:171–180CrossRefPubMedGoogle Scholar
  11. 11.
    Demmer J, Zhou C, Hubbard MJ (1997) Molecular cloning of ERp29, a novel and widely expressed resident of the endoplasmic reticulum. FEBS Lett 402:145–150CrossRefPubMedGoogle Scholar
  12. 12.
    Hubbard MJ, McHugh NJ (2000) Human ERp29: isolation, primary structural characterisation and two-dimensional gel mapping. Electrophoresis 21:3785–3796CrossRefPubMedGoogle Scholar
  13. 13.
    Hubbard MJ, McHugh NJ, Carne DL (2000) Isolation of ERp29, a novel endoplasmic reticulum protein, from rat enamel cells evidence for a unique role in secretory-protein synthesis. Eur J Biochem 267:1945–1957CrossRefPubMedGoogle Scholar
  14. 14.
    Hubbard MJ, Mangum JE, McHugh NJ (2004) Purification and biochemical characterisation of native ERp29 from rat liver. Biochem J 383:589–598CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hermann VM, Cutfield JF, Hubbard MJ (2005) Biophysical characterization of ERp29. Evidence for a key structural role of cysteine 125. J Biol Chem 280:13529–13537CrossRefPubMedGoogle Scholar
  16. 16.
    Hubbard MJ, Faught MJ, Carlisle BH, Stockwell PA (2001) ToothPrint, a proteomic database for dental tissues. Proteomics 1:132–135CrossRefPubMedGoogle Scholar
  17. 17.
    Hubbard MJ, Kon JC (2002) Proteomic analysis of dental tissues. J Chromatogr B Analyt Technol Biomed Life Sci 771:211–220CrossRefPubMedGoogle Scholar
  18. 18.
    Mangum JE, Farlie PG, Hubbard MJ (2005) Proteomic profiling of facial development in chick embryos. Proteomics 5:2542–2550CrossRefPubMedGoogle Scholar
  19. 19.
    Mangum JE, Crombie FA, Kilpatrick N, Manton DJ, Hubbard MJ (2010) Surface integrity governs the proteome of hypomineralized enamel. J Dent Res 89:1160–1165CrossRefPubMedGoogle Scholar
  20. 20.
    Mangum JE, Veith PD, Reynolds EC, Hubbard MJ (2006) Towards second-generation proteome analysis of murine enamel-forming cells. Eur J Oral Sci 114(Suppl 1):259–265CrossRefPubMedGoogle Scholar
  21. 21.
    Kardos TB, Hubbard MJ (1981) Rapid dissection of rodent molar-tooth germs. Lab Anim 15:371–373CrossRefPubMedGoogle Scholar
  22. 22.
    Lanne B, Panfilov O (2005) Protein staining influences the quality of mass spectra obtained by peptide mass fingerprinting after separation on 2-d gels. A comparison of staining with coomassie brilliant blue and sypro ruby. J Proteome Res 4:175–179CrossRefPubMedGoogle Scholar
  23. 23.
    Shnyder SD, Mangum JE, Hubbard MJ (2008) Triplex profiling of functionally distinct chaperones (ERp29/PDI/BiP) reveals marked heterogeneity of the endoplasmic reticulum proteome in cancer. J Proteome Res 7:3364–3372CrossRefPubMedGoogle Scholar
  24. 24.
    Simpson RJ (2003) Proteins and proteomics: a laboroatory manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NYGoogle Scholar
  25. 25.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefPubMedGoogle Scholar
  26. 26.
    Hubbard MJ, Klee CB (1987) Calmodulin binding by calcineurin. Ligand-induced renaturation of protein immobilized on nitrocellulose. J Biol Chem 262:15062–15070PubMedGoogle Scholar
  27. 27.
    Weerheijm KL (2004) Molar incisor hypomineralization (MIH): clinical presentation, aetiology and management. Dent Update 31:9–12PubMedGoogle Scholar
  28. 28.
    http://www.thed3group.org. Accessed Sept 2015
  29. 29.
    James GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86:574–579CrossRefPubMedGoogle Scholar
  30. 30.
    McCarthy J, Hopwood F, Oxley D, Laver M, Castagna A, Righetti PG, Williams K, Herbert B (2003) Carbamylation of proteins in 2-D electrophoresis—myth or reality? J Proteome Res 2:239–242CrossRefPubMedGoogle Scholar
  31. 31.
    Biedermann K, Jepsen PK, Riise E, Svendsen I (1989) Purification and characterization of a Serratia marcescens nuclease produced by Escherichia coli. Carlsberg Res Commun 54:17–27CrossRefPubMedGoogle Scholar
  32. 32.
    Hochstrasser DF, Harrington MG, Hochstrasser AC, Miller MJ, Merril CR (1988) Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal Biochem 173:424–435CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jonathan E. Mangum
    • 1
  • Jew C. Kon
    • 1
    • 2
  • Michael J. Hubbard
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology and TherapeuticsUniversity of MelbourneMelbourneAustralia
  2. 2.Department of Pediatrics, Royal Children’s HospitalUniversity of MelbourneMelbourneAustralia

Personalised recommendations