Oral Biology pp 367-380 | Cite as

Embryonic Explant Culture: Studying Effects of Regulatory Molecules on Gene Expression in Craniofacial Tissues

  • Katja NärhiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1537)


The ex vivo culture of embryonic tissue explants permits the continuous monitoring of growth and morphogenesis at specific embryonic stages. The functions of soluble regulatory molecules can be analyzed by introducing them into culture medium or locally with beads to the tissue. Gene expression in the manipulated tissue explants can be analyzed using in situ hybridization, quantitative PCR, and reporter constructs combined to organ culture to examine the functions of the signaling molecules.

Key words

Mouse Morphogenesis Signaling molecule Organ culture Tooth Whisker Palate Calvarial bone In situ hybridization Real-time quantitative PCR 


  1. 1.
    Tummers M, Thesleff I (2009) The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool 312B:309–319CrossRefGoogle Scholar
  2. 2.
    Trowell OA (1959) The culture of mature organs in a synthetic medium. Exp Cell Res 16:118–147CrossRefPubMedGoogle Scholar
  3. 3.
    Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse. Science 118:52–55CrossRefPubMedGoogle Scholar
  4. 4.
    Saxén I (1973) Effects of hydrocortisone on the development in vitro of the secondary palate in two inbred strains of mice. Arch Oral Biol 18:1469–1479CrossRefPubMedGoogle Scholar
  5. 5.
    Saxén L, Lehtonen E, Karkinen-Jääskeläinen M, Nordling S, Wartiovaar J (1976) Morphogenetic tissue interactions: mediation by transmissible signal substances or through cell contacts? Nature 259:662–663CrossRefPubMedGoogle Scholar
  6. 6.
    Nogawa H, Takahashi Y (1991) Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112:855–861PubMedGoogle Scholar
  7. 7.
    Nogawa H, Ito T (1995) Branching morphogenesis of embryonic mouse lung epithelium in mesenchyme-free culture. Development 121:1015–1022PubMedGoogle Scholar
  8. 8.
    Kim HJ, Rice DPC, Kettunen PJ, Thesleff I (1998) FGF-, BMP- and Shh-mediated signaling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125:1241–1251PubMedGoogle Scholar
  9. 9.
    Voutilainen M, Lindfors P, Mikkola ML (2013) Protocol: ex vivo culture of mouse embryonic mammary buds. J Mammary Gland Biol Neoplasia 18:239–245CrossRefPubMedGoogle Scholar
  10. 10.
    Saxén L (1966) The effect of tetracycline on osteogenesis in vitro. J Exp Zool 162:269–294CrossRefGoogle Scholar
  11. 11.
    Thesleff I, Lehtonen E, Wartiovaara J, Saxén L (1977) Interference of tooth differentiation with interposed filters. Dev Biol 58:197–203CrossRefPubMedGoogle Scholar
  12. 12.
    Partanen AM, Ekblom P, Thesleff I (1985) Epidermal growth factor inhibits tooth morphogenesis and differentiation. Dev Biol 111:84–94CrossRefPubMedGoogle Scholar
  13. 13.
    Vainio S, Karavanova I, Jowett A, Thesleff I (1993) Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75:45–58CrossRefPubMedGoogle Scholar
  14. 14.
    Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161–169PubMedGoogle Scholar
  15. 15.
    Mitsiadis T, Muramatsu T, Muramatsu H, Thesleff I (1995) Midkine (MK), a heparing-binding growth/differentiation factor, is regulated by retinoic acid and epithelial-mesenchymal interactions in the developing mouse tooth, and affects cell proliferation and morphogenesis. J Cell Biol 129:267–281CrossRefPubMedGoogle Scholar
  16. 16.
    Laurikkala J, Mikkola M, Mustonen T, Aberg T, Koppinen P, Pispa J, Nieminen P, Galceran J, Grosschedl R, Thesleff I (2001) TNF signaling via the ligand-receptor pair ectodysplasin and edar controls the function of epithelial signaling centers and is regulated by Wnt and activin during tooth organogenesis. Dev Biol 229:443–455CrossRefPubMedGoogle Scholar
  17. 17.
    Wang XP, Suomalainen M, Felszeghy S, Zelarayan LC, Alonso MT, Plikus MV, Maas RL, Chuong CM, Schimmang T, Thesleff I (2007) An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol 5:1324–1333Google Scholar
  18. 18.
    Järvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I (2006) Continuous tooth regeneration in mouse in induced by activated epithelial Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 103:18627–18632CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, Maxson RE, Thesleff I (2000) Integration of FGF and TWIST in calvarial bone and suture development. Development 127:1845–1855PubMedGoogle Scholar
  20. 20.
    Rice R, Spencer-Dene B, Connor EC, Gritli-Linde A, McMahon AP, Dickson C, Thesleff I, Rice DP (2004) Disruption of Fgf 10/Fgf2b-coordinated epithelial-mesenchymal interactions causes cleft palate. J Clin Invest 113:1692–1700CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Närhi K, Järvinen E, Birchmeier W, Taketo MM, Mikkola ML, Thesleff I (2008) Sustained epithelial β-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development 135:1019–1028CrossRefPubMedGoogle Scholar
  22. 22.
    Närhi K, Tummers M, Ahtiainen L, Itoh N, Thesleff I, Mikkola ML (2012) Sostdc1 defines the size and number of skin appendage placodes. Dev Biol 15:149–161CrossRefGoogle Scholar
  23. 23.
    Wilkinson DG, Green J (1990) In situ hybridization and the three-dimensional reconstruction of serial sections. In: Copp AJ, Cockroft DL (eds) Postimplantation mammalian embryos: a practical approach. IRL Press, Oxford, pp 155–171Google Scholar
  24. 24.
    James MJ, Järvinen E, Wang XP, Thesleff I (2006) Different roles of runx2 during early neural crest–derived bone and tooth development. J Bone Miner Res 21:1034–1044CrossRefPubMedGoogle Scholar
  25. 25.
    Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I (2008) Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Dev Biol 320:60–71CrossRefPubMedGoogle Scholar
  26. 26.
    Vaahtokari A, Vainio S, Thesleff I (1991) Associations between transforming growth factor β1 RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development 113:985–994PubMedGoogle Scholar
  27. 27.
    Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211:256–268CrossRefPubMedGoogle Scholar
  28. 28.
    Mustonen T, Tümmers M, Mikami T, Itoh N, Zhang N, Gridley T, Thesleff I (2002) Lunatic fringe, FGF, and BMP regulate the Notch pathway during epithelial morphogenesis of teeth. Dev Biol 248:281–293CrossRefPubMedGoogle Scholar
  29. 29.
    Sahlberg C, Mustonen T, Thesleff I (2002) Explant cultures of embryonic epithelium: Analysis of mesenchymal signals. Methods Mol Biol 188:373–382PubMedGoogle Scholar
  30. 30.
    Laurikkala J, Kassai Y, Pakkasjärvi L, Thesleff I, Itoh N (2003) Identification of a secreted BMP antagonist, ectodin, interacting BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol 264:91–105CrossRefPubMedGoogle Scholar
  31. 31.
    Tümmers M, Yamashiro T, Thesleff I (2007) Modulation of epithelial cell fate of the root in vitro. J Dent Res 86:1063–1067CrossRefPubMedGoogle Scholar
  32. 32.
    Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118:517–528CrossRefPubMedGoogle Scholar
  33. 33.
    Kavanagh KD, Evans AR, Jernvall J (2007) Predicting evolutionary patterns of mammalian teeth from development. Nature 449:427–432CrossRefPubMedGoogle Scholar
  34. 34.
    Munne PM, Tummers M, Järvinen E, Thesleff I, Jernvall J (2009) Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role for dental mesenchyme in limiting tooth induction. Development 136:393–402CrossRefPubMedGoogle Scholar
  35. 35.
    Juuri E, Saito K, Ahtiainen L, Seidel K, Tummers M, Hochedlinger K, Klein OD, Thesleff I, Michon F (2012) Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev Cell 23:17–28CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland

Personalised recommendations