Advertisement

Oral Biology pp 327-345 | Cite as

Differential Expression and Functional Analysis of High-Throughput -Omics Data Using Open Source Tools

  • Moritz KebschullEmail author
  • Melanie Julia Fittler
  • Ryan T. Demmer
  • Panos N. Papapanou
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1537)

Abstract

Today, –omics analyses, including the systematic cataloging of messenger RNA and microRNA sequences or DNA methylation patterns in a cell population, organ, or tissue sample, allow for an unbiased, comprehensive genome-level analysis of complex diseases, offering a large advantage over earlier “candidate” gene or pathway analyses. A primary goal in the analysis of these high-throughput assays is the detection of those features among several thousand that differ between different groups of samples. In the context of oral biology, our group has successfully utilized –omics technology to identify key molecules and pathways in different diagnostic entities of periodontal disease.

A major issue when inferring biological information from high-throughput –omics studies is the fact that the sheer volume of high-dimensional data generated by contemporary technology is not appropriately analyzed using common statistical methods employed in the biomedical sciences.

In this chapter, we outline a robust and well-accepted bioinformatics workflow for the initial analysis of –omics data generated using microarrays or next-generation sequencing technology using open-source tools. Starting with quality control measures and necessary preprocessing steps for data originating from different –omics technologies, we next outline a differential expression analysis pipeline that can be used for data from both microarray and sequencing experiments, and offers the possibility to account for random or fixed effects. Finally, we present an overview of the possibilities for a functional analysis of the obtained data.

Key words

Periodontal disease Gene expression Transcriptome microRNA DNA methylation Microarray Next-generation sequencing Gingiva Differential expression analysis Functional groups 

Notes

Acknowledgments

This work was supported by grants from the German Society for Periodontology (DG PARO) and the German Society for Oral and Maxillo-Facial Sciences (DGZMK) to M.K. and by grants from NIH/NIDCR (DE015649, DE021820 and DE024735) and by an unrestricted gift from Colgate-Palmolive Inc. to author P.N.P.

References

  1. 1.
    Kebschull M, Demmer RT, Grun B, Guarnieri P, Pavlidis P, Papapanou PN (2014) Gingival tissue transcriptomes identify distinct periodontitis phenotypes. J Dent Res 93:459–468CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nowak M, Kramer B, Haupt M, Papapanou PN, Kebschull J, Hoffmann P, Schmidt-Wolf IG, Jepsen S, Brossart P, Perner S, Kebschull M (2013) Activation of invariant NK T cells in periodontitis lesions. J Immunol 190:2282–2291CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kramer B, Kebschull M, Nowak M, Demmer RT, Haupt M, Korner C, Perner S, Jepsen S, Nattermann J, Papapanou PN (2013) Role of the NK cell-activating receptor CRACC in periodontitis. Infect Immun 81:690–696CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kebschull M, Guarnieri P, Demmer RT, Boulesteix AL, Pavlidis P, Papapanou PN (2013) Molecular differences between chronic and aggressive periodontitis. J Dent Res 92:1081–1088CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Stoecklin-Wasmer C, Guarnieri P, Celenti R, Demmer RT, Kebschull M, Papapanou PN (2012) MicroRNAs and their target genes in gingival tissues. J Dent Res 91:934–940CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kebschull M, Papapanou PN (2010) The use of gene arrays in deciphering the pathobiology of periodontal diseases. Methods Mol Biol 666:385–393CrossRefPubMedGoogle Scholar
  7. 7.
    Papapanou PN, Behle JH, Kebschull M, Celenti R, Wolf DL, Handfield M, Pavlidis P, Demmer RT (2009) Subgingival bacterial colonization profiles correlate with gingival tissue gene expression. BMC Microbiol 9:221CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Demmer RT, Behle JH, Wolf DL, Handfield M, Kebschull M, Celenti R, Pavlidis P, Papapanou PN (2008) Transcriptomes in healthy and diseased gingival tissues. J Periodontol 79:2112–2124CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Joensson D, Ramberg P, Demmer RT, Kebschull M, Dahlen G, Papapanou PN (2011) Gingival tissue transcriptomes in experimental gingivitis. J Clin Periodontol 38:599–611CrossRefGoogle Scholar
  10. 10.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ritchie ME, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A, Smyth GK (2006) Empirical array quality weights in the analysis of microarray data. BMC Bioinformatics 7:261CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21CrossRefPubMedGoogle Scholar
  14. 14.
    Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics 51:11.14.11–19. doi: 10.1002/0471250953.bi1114s51 Google Scholar
  15. 15.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Merico D, Isserlin R, Bader GD (2011) Visualizing gene-set enrichment results using the cytoscape plug-in enrichment map. Methods Mol Biol 781:257–277CrossRefPubMedGoogle Scholar
  19. 19.
    Gillis J, Mistry M, Pavlidis P (2010) Gene function analysis in complex data sets using ErmineJ. Nat Protoc 5:1148–1159CrossRefPubMedGoogle Scholar
  20. 20.
    Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA (2014) Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics 30:1363–1369CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930CrossRefPubMedGoogle Scholar
  22. 22.
    Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300Google Scholar
  25. 25.
    Shi W, Banerjee A, Ritchie ME, Gerondakis S, Smyth GK (2009) Illumina WG-6 BeadChip strips should be normalized separately. BMC Bioinformatics 10:372CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hansen KD, Brenner SE, Dudoit S (2010) Biases in illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38, e131CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kopylova E, Noe L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217CrossRefPubMedGoogle Scholar
  28. 28.
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512CrossRefPubMedGoogle Scholar
  30. 30.
    Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527CrossRefPubMedGoogle Scholar
  31. 31.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Moritz Kebschull
    • 1
    • 2
    Email author
  • Melanie Julia Fittler
    • 3
  • Ryan T. Demmer
    • 4
  • Panos N. Papapanou
    • 2
  1. 1.Department of Periodontology, Operative and Preventive Dentistry, Faculty of MedicineUniversity of BonnBonnGermany
  2. 2.Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation SciencesColumbia University College of Dental MedicineNew YorkUSA
  3. 3.Department of Periodontology, Operative and Preventive DentistryUniversity of BonnBonnGermany
  4. 4.Department of EpidemiologyColumbia University Mailman School of Public HealthNew YorkUSA

Personalised recommendations