Advertisement

Oral Biology pp 203-218 | Cite as

Methods to Study Antagonistic Activities Among Oral Bacteria

  • Fengxia QiEmail author
  • Jens Kreth
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1537)

Abstract

Most bacteria in nature exist in multispecies communities known as biofilms. In the natural habitat where resources (nutrient, space, etc.) are usually limited, individual species must compete or collaborate with other neighboring species in order to perpetuate in the multispecies community. The human oral cavity is colonized by >700 microbial species known as the indigenous microbiota. This indigenous flora normally maintains an ecological balance through antagonistic as well as mutualistic interspecies interactions. However, environmental perturbation may disrupt this balance, leading to overgrowth of pathogenic species which could in turn initiate diseases such as dental caries (tooth decay) and periodontitis (gum disease). Understanding the mechanisms of diversity maintenance may help developing novel approaches to manage these “polymicrobial diseases.” In this chapter, we focus on a well-characterized form of biochemical warfare: bacteriocins produced by Streptococcus mutans, a primary dental caries pathogen, and hydrogen peroxide (H2O2) produced by several oral commensal streptococci. We will describe detailed methodologies on the competition assay, isolation, purification, and characterization of bacteriocins.

Key words

Bacteriocins Hydrogen peroxide (H2O2Oral streptococci Streptococcus mutans Interspecies competition Biofilms Luciferase reporter 

References

  1. 1.
    Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349CrossRefPubMedGoogle Scholar
  2. 2.
    Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364CrossRefPubMedGoogle Scholar
  3. 3.
    Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Ann Rev Microbiol 56:117–137CrossRefGoogle Scholar
  4. 4.
    Sahl HG, Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Ann Rev Microbiol 52:41–79CrossRefGoogle Scholar
  5. 5.
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 42:80–87CrossRefPubMedGoogle Scholar
  8. 8.
    Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144CrossRefPubMedGoogle Scholar
  9. 9.
    Hamilton IA (2000) Ecological basis for dental caries. In: Kuramitsu HK, Ellen RP (eds) Oral bacterial ecology. Horizon Scientific Press, Wymondham, Norfolk, UK, pp 215–275Google Scholar
  10. 10.
    Rosan B, Lamont RJ (2000) Dental plaque formation. Microbes Infect 2:1599–1607CrossRefPubMedGoogle Scholar
  11. 11.
    Kreth J, Merritt J, Qi F (2009) Bacterial and host interactions of oral streptococci. DNA Cell Biol 28:397–403CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Loesche WJ (1986) The identification of bacteria associated with periodontal disease and dental caries by enzymatic methods. Oral Microbiol Immunol 1:65–72CrossRefPubMedGoogle Scholar
  13. 13.
    Merritt J, Qi F (2012) The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol 27:57–69CrossRefPubMedGoogle Scholar
  14. 14.
    Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM (2000) Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun 68:4018–4023CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kreth J, Merritt J, Shi W, Qi F (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Qi F, Chen P, Caufield PW (2001) The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhu L, Kreth J (2012) The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxid Med Cell Longev 2012:717843CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Scoffield JA, Wu H (2015) Oral streptococci and nitrite-mediated interference of Pseudomonas aeruginosa. Infect Immun 83:101–107CrossRefPubMedGoogle Scholar
  20. 20.
    Giacaman RA, Torres S, Gomez Y, Munoz-Sandoval C, Kreth J (2015) Correlation of Streptococcus mutans and Streptococcus sanguinis colonization and ex vivo hydrogen peroxide production in carious lesion-free and high caries adults. Arch Oral Biol 60:154–159CrossRefPubMedGoogle Scholar
  21. 21.
    Qi F, Chen P, Caufield PW (2000) Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qi F, Chen P, Caufield PW (1999) Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65:3880–3887PubMedPubMedCentralGoogle Scholar
  23. 23.
    Podbielski A, Spellerberg B, Woischnik M, Pohl B, Lutticken R (1996) Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS). Gene 177:137–147CrossRefPubMedGoogle Scholar
  24. 24.
    Merritt J, Tsang P, Zheng L, Shi W, Qi F (2007) Construction of a counterselection-based in-frame deletion system for genetic studies of Streptococcus mutans. Oral Microbiol Immunol 22:95–102CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.University of Oklahoma Health Sciences Center BRC364Oklahoma CityUSA
  2. 2.Oregon Health and Science UniversityPortlandUSA

Personalised recommendations