Skip to main content

Common Challenges in Studying the Structure and Function of Bacterial Proteins: Case Studies from Helicobacter pylori

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1535))

  • 2857 Accesses

Abstract

Employing biophysical and structural methods is a powerful way to elucidate mechanisms of molecular recognition in bacterial pathogenesis. Such studies invariably depend on the production of pure, folded and stable proteins. Many proteins that can be expressed recombinantly ultimately fail to meet one or more of these criteria. The cag proteins from Helicobacter pylori form a secretion system that delivers the oncoprotein, CagA, into human gastric epithelial cells through an interaction between CagL and host cell integrins, where it can cause gastric adenocarcinoma. Expression of full length CagA and CagL is problematic as CagA undergoes rapid degradation during purification and CagL is thermally unstable. Here, we describe a method for the purification of CagA that results in the production of the full length protein through coexpression with its endogenous chaperone, CagF, and its subsequent separation from its chaperone. Furthermore, we detail the production of CagL and the use of differential scanning fluorimetry to identify how CagL is thermally stabilized by reduced pH, which led to a new crystal form of CagL and novel insight to pathogenic mechanisms. The methods described here for the production of stable cag proteins can be applied to a wide range of proteins involved in bacterial pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peek RM Jr, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2(1):28–37

    Article  CAS  PubMed  Google Scholar 

  2. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A (1995) Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55(10):2111–2115

    CAS  PubMed  Google Scholar 

  3. Wen S, Moss SF (2009) Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett 282(1):1–8

    Article  CAS  PubMed  Google Scholar 

  4. de Bernard M, Arico B, Papini E, Rizzuto R, Grandi G, Rappuoli R, Montecucco C (1997) Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol Microbiol 26(4):665–674

    Article  PubMed  Google Scholar 

  5. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287(5457):1497–1500

    Article  CAS  PubMed  Google Scholar 

  6. Fischer W, Puls J, Buhrdorf R, Gebert B, Odenbreit S, Haas R (2001) Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42(5):1337–1348

    Article  CAS  PubMed  Google Scholar 

  7. Yamaoka Y, El-Zimaity HM, Gutierrez O, Figura N, Kim JG, Kodama T, Kashima K, Graham DY (1999) Relationship between the cagA 3′ repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology 117(2):342–349

    Article  CAS  PubMed  Google Scholar 

  8. Hayashi T, Senda M, Morohashi H, Higashi H, Horio M, Kashiba Y, Nagase L, Sasaya D, Shimizu T, Venugopalan N, Kumeta H, Noda NN, Inagaki F, Senda T, Hatakeyama M (2012) Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe 12(1):20–33

    Article  CAS  PubMed  Google Scholar 

  9. Kaplan-Turkoz B, Jimenez-Soto LF, Dian C, Ertl C, Remaut H, Louche A, Tosi T, Haas R, Terradot L (2012) Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin. Proc Natl Acad Sci U S A 109(36):14640–14645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Backert S, Tegtmeyer N (2012) Helicobacter pylori CagA tertiary structure reveals functional insights. Cell Host Microbe 12(1):3–5

    Article  CAS  PubMed  Google Scholar 

  11. Hohlfeld S, Pattis I, Puls J, Plano GV, Haas R, Fischer W (2006) A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol Microbiol 59(5):1624–1637

    Article  CAS  PubMed  Google Scholar 

  12. Pattis I, Weiss E, Laugks R, Haas R, Fischer W (2007) The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology 153(Pt 9):2896–2909

    Article  CAS  PubMed  Google Scholar 

  13. Bonsor DA, Weiss E, Iosub-Amir A, Reingewertz TH, Chen TW, Haas R, Friedler A, Fischer W, Sundberg EJ (2013) Characterization of the translocation-competent complex between the Helicobacter pylori oncogenic protein CagA and the accessory protein CagF. J Biol Chem 288(46):32897–32909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Couturier MR, Tasca E, Montecucco C, Stein M (2006) Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 74(1):273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Angelini A, Tosi T, Mas P, Acajjaoui S, Zanotti G, Terradot L, Hart DJ (2009) Expression of Helicobacter pylori CagA domains by library-based construct screening. FEBS J 276(3):816–824

    Article  CAS  PubMed  Google Scholar 

  16. Rohde M, Puls J, Buhrdorf R, Fischer W, Haas R (2003) A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol 49(1):219–234

    Article  CAS  PubMed  Google Scholar 

  17. Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE, McClain MS, McDonald WH, Cover TL (2011) Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog 7(9):e1002237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, Konig W, Backert S (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449(7164):862–866

    Article  CAS  PubMed  Google Scholar 

  19. Conradi J, Huber S, Gaus K, Mertink F, Royo Gracia S, Strijowski U, Backert S, Sewald N (2012) Cyclic RGD peptides interfere with binding of the Helicobacter pylori protein CagL to integrins αVβ3 and α5β1. Amino Acids 43(1):219–232

    Article  CAS  PubMed  Google Scholar 

  20. Wiedemann T, Hofbaur S, Tegtmeyer N, Huber S, Sewald N, Wessler S, Backert S, Rieder G (2012) Helicobacter pylori CagL dependent induction of gastrin expression via a novel αVβ5-integrin-integrin linked kinase signalling complex. Gut 61(7):986–996

    Article  CAS  PubMed  Google Scholar 

  21. Barden S, Niemann HH (2015) Adhesion of several cell lines to Helicobacter pylori CagL Is mediated by integrin αVβ6 via an RGDLXXL motif. J Mol Biol 427(6 Pt B):1304–1315

    Article  CAS  PubMed  Google Scholar 

  22. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280

    Article  CAS  PubMed  Google Scholar 

  23. Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH (2013) A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 21(11):1931–1941

    Article  CAS  PubMed  Google Scholar 

  24. Barden S, Schomburg B, Conradi J, Backert S, Sewald N, Niemann HH (2014) Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta Crystallogr D Biol Crystallogr 70(Pt 5):1391–1400

    Article  CAS  PubMed  Google Scholar 

  25. Bonsor DA, Pham KT, Beadenkopf R, Diederichs K, Haas R, Beckett D, Fischer W, Sundberg EJ (2015) Integrin engagement by the helical RGD motif of the Helicobacter pylori CagL protein is regulated by pH-induced displacement of a neighboring helix. J Biol Chem 290(20):12929–12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bross P, Andresen BS, Winter V, Krautle F, Jensen TG, Nandy A, Kolvraa S, Ghisla S, Bolund L, Gregersen N (1993) Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation. Biochim Biophys Acta 1182(3):264–274

    Article  CAS  PubMed  Google Scholar 

  27. Maskos K, Huber-Wunderlich M, Glockshuber R (2003) DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo. J Mol Biol 325(3):495–513

    Article  CAS  PubMed  Google Scholar 

  28. Ramm K, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. II. Isomerase-independent chaperone activity in vitro. J Biol Chem 275(22):17106–17113

    Article  CAS  PubMed  Google Scholar 

  29. Bothmann H, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275(22):17100–17105

    Article  CAS  PubMed  Google Scholar 

  30. Ireton GC, Stoddard BL (2004) Microseed matrix screening to improve crystals of yeast cytosine deaminase. Acta Crystallogr D Biol Crystallogr 60(Pt 3):601–605

    Article  PubMed  Google Scholar 

  31. Saridakis E, Khurshid S, Govada L, Phan Q, Hawkins D, Crichlow GV, Lolis E, Reddy SM, Chayen NE (2011) Protein crystallization facilitated by molecularly imprinted polymers. Proc Natl Acad Sci U S A 108(27):11081–11086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261(5117):50–58

    Article  CAS  PubMed  Google Scholar 

  33. Wernimont A, Edwards A (2009) In situ proteolysis to generate crystals for structure determination: an update. PLoS One 4(4):e5094

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298

    Article  CAS  PubMed  Google Scholar 

  35. Dupeux F, Rower M, Seroul G, Blot D, Marquez JA (2011) A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Crystallogr D Biol Crystallogr 67(Pt 11):915–919

    Article  CAS  PubMed  Google Scholar 

  36. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2(9):2212–2221

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Sundberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bonsor, D.A., Sundberg, E.J. (2017). Common Challenges in Studying the Structure and Function of Bacterial Proteins: Case Studies from Helicobacter pylori . In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 1535. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6673-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6673-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6671-4

  • Online ISBN: 978-1-4939-6673-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics