Skip to main content

The Zebrafish as a Model for Human Bacterial Infections

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1535))

Abstract

The development of the zebrafish (Danio rerio) infectious disease model has provided new insights and information into pathogenesis. Many of these new discoveries would not have been possible using a typical mammalian model. The advantages of using this model are many and in the last 15 years the model has been exploited for the analysis of many different pathogens. Here, we describe in detail how to perform a bacterial infection using either the adult zebrafish or zebrafish larvae using microinjection. Multiple methods of analysis are described that can be used to address specific questions pertaining to disease progression and the interactions with the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng W, Tang X, Hou M, Li C, Xie J (2011) New insights into the pathogenesis of tuberculosis revealed by Mycobacterium marinum: the zebrafish model from the systems biology perspective. Crit Rev Eukaryot Gene Expr 21(4):337–345

    Article  CAS  PubMed  Google Scholar 

  2. Krishnan N, Robertson BD, Thwaites G (2010) The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis (Edinb) 90(6):361–366

    Article  CAS  Google Scholar 

  3. Lesley R, Ramakrishnan L (2008) Insights into early mycobacterial pathogenesis from the zebrafish. Curr Opin Microbiol 11(3):277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meijer AH, Spaink HP (2011) Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 12(7):1000–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pozos TC, Ramakrishnan L (2004) New models for the study of Mycobacterium-host interactions. Curr Opin Immunol 16(4):499–505

    Article  CAS  PubMed  Google Scholar 

  6. Ramakrishnan L (2013) Looking within the zebrafish to understand the tuberculous granuloma. Adv Exp Med Biol 783:251–266

    Article  PubMed  Google Scholar 

  7. Tobin DM, Ramakrishnan L (2008) Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 10(5):1027–1039

    Article  CAS  PubMed  Google Scholar 

  8. Allen JP, Neely MN (2011) The Streptococcus iniae transcriptional regulator CpsY is required for protection from neutrophil-mediated killing and proper growth in vitro. Infect Immun 79(11):4638–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harvie EA, Green JM, Neely MN, Huttenlocher A (2013) Innate immune response to Streptococcus iniae infection in zebrafish larvae. Infect Immun 81(1):110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Locke JB, Aziz RK, Vicknair MR, Nizet V, Buchanan JT (2008) Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development. PLoS One 3(7):e2824

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lowe BA, Miller JD, Neely MN (2007) Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect Immun 75(3):1255–1264

    Article  CAS  PubMed  Google Scholar 

  12. Miller JD, Neely MN (2005) Large-scale screen highlights the importance of capsule for virulence in the zoonotic pathogen Streptococcus iniae. Infect Immun 73(2):921–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neely M, Pfeifer J, Caparon MG (2002) Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun 70(7):3904–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Phelps HA, Neely MN (2005) Evolution of the zebrafish model: from development to immunity and infectious disease. Zebrafish 2(2):87–103

    Article  CAS  PubMed  Google Scholar 

  15. Meijer AH, Gabby Krens SF, Medina Rodriguez IA, He S, Bitter W, Ewa Snaar-Jagalska B, Spaink HP (2004) Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40(11):773–783

    Article  CAS  PubMed  Google Scholar 

  16. Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25(6):963–975

    Article  CAS  PubMed  Google Scholar 

  17. Stein C, Caccamo M, Laird G, Leptin M (2007) Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol 8(11):R251

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sullivan C, Kim CH (2008) Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 25(4):341–350

    Article  CAS  PubMed  Google Scholar 

  19. Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA, Litman GW, Catic A, Amemiya CT, Zon LI, Trede NS (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330

    PubMed  Google Scholar 

  20. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20(4):367–379

    Article  CAS  PubMed  Google Scholar 

  21. Yoder JA (2004) Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol C Toxicol Pharmacol 138(3):271–280

    Article  PubMed  Google Scholar 

  22. Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32(7):745–757

    Article  CAS  PubMed  Google Scholar 

  23. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318

    Article  CAS  PubMed  Google Scholar 

  24. Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80(6):1281–1288

    Article  CAS  PubMed  Google Scholar 

  25. Clay H, Davis JM, Beery D, Huttenlocher A, Lyons SE, Ramakrishnan L (2007) Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2(1):29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Redd MJ, Kelly G, Dunn G, Way M, Martin P (2006) Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton 63(7):415–422

    Article  CAS  PubMed  Google Scholar 

  27. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108(13):3976–3978

    Article  CAS  PubMed  Google Scholar 

  28. van der Sar AM, Musters RJ, van Eeden FJ, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5(9):601–611

    Article  PubMed  Google Scholar 

  29. Ward AC, McPhee DO, Condron MM, Varma S, Cody SH, Onnebo SM, Paw BH, Zon LI, Lieschke GJ (2003) The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 102(9):3238–3240

    Article  CAS  PubMed  Google Scholar 

  30. Phelps HA, Runft DL, Neely MN (2009) Adult zebrafish model of streptococcal infection. Curr Protoc Microbiol Chapter 9:9D.1

    Google Scholar 

  31. Harvie EA, Huttenlocher A (2015) Non-invasive imaging of the innate immune response in a zebrafish larval model of Streptococcus iniae infection. J Vis Exp. 2015 Apr 21;(98). doi:10.3791/52788. PMID:25938624

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody N. Neely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Neely, M.N. (2017). The Zebrafish as a Model for Human Bacterial Infections. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 1535. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6673-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6673-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6671-4

  • Online ISBN: 978-1-4939-6673-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics