Immobilization Techniques of Bacteria for Live Super-resolution Imaging Using Structured Illumination Microscopy

  • Amy L. Bottomley
  • Lynne Turnbull
  • Cynthia B. Whitchurch
  • Elizabeth J. Harry
Part of the Methods in Molecular Biology book series (MIMB, volume 1535)


Advancements in optical microscopy technology have allowed huge progression in the ability to understand protein structure and dynamics in live bacterial cells using fluorescence microscopy. Paramount to high-quality microscopy is good sample preparation to avoid bacterial cell movement that can result in motion blur during image acquisition. Here, we describe two techniques of sample preparation that reduce unwanted cell movement and are suitable for application to a number of bacterial species and imaging methods.

Key words

Bacterial slide preparation Agarose pads GelGro slabs Super-resolution microscopy Fast three-dimensional structured illumination microscopy 


  1. 1.
    Strauss MP et al (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10(9):e1001389CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Glaser P et al (1997) Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11(9):1160–1168CrossRefPubMedGoogle Scholar
  3. 3.
    Turnbull L, Whitchurch CB (2014) Motility assay: twitching motility. Methods Mol Biol 1149:73–86CrossRefPubMedGoogle Scholar
  4. 4.
    Semmler ABT, Whitchurch CB, Mattick JS (1999) A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145:2863–2873CrossRefPubMedGoogle Scholar
  5. 5.
    Li D et al (2015) ADVANCED IMAGING.Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251):aab3500Google Scholar
  6. 6.
    Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87CrossRefPubMedGoogle Scholar
  7. 7.
    Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rego EH et al (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109(3):E135–E143CrossRefPubMedGoogle Scholar
  9. 9.
    Turnbull L et al (2014) Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-Structured Illumination Microscopy (f3D-SIM). J Vis Exp 29(91):51469Google Scholar
  10. 10.
    Schermelleh L et al (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gustafsson MG et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957–4970CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Amy L. Bottomley
    • 1
  • Lynne Turnbull
    • 1
  • Cynthia B. Whitchurch
    • 1
  • Elizabeth J. Harry
    • 1
  1. 1.The ithree instituteUniversity of Technology SydneySydneyAustralia

Personalised recommendations