Skip to main content

Assessing Vacuolar Escape of Listeria Monocytogenes

  • Protocol
  • First Online:
Bacterial Pathogenesis

Abstract

Listeria monocytogenes is a bacterial pathogen which invades and multiplies within non-professional phagocytes. Signaling cascades involved in cellular entry have been extensively analyzed, but the events leading to vacuolar escape remain less clear. In this chapter, we detail a microscopy FRET-based assay which allows quantitatively measuring L. monocytogenes infection and escape from its internalization vacuole, as well as a correlative light/electron microscopy method to investigate the morphological features of the vacuolar compartments containing L. monocytogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Noordhout CM, Devleesschauwer B, Angulo F et al (2014) The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis 14:1073–1082

    Article  PubMed Central  Google Scholar 

  2. Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cossart P (2011) Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci U S A 108:19484–19491. doi:10.1073/pnas.1112371108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pizarro-Cerdá J, Kühbacher A, Cossart P (2012) Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2:a010009. doi:10.1101/cshperspect.a010009

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kühbacher A, Emmenlauer M, Rämö P et al (2015) Genome-wide siRNA screen identifies complementary signaling pathways involved in Listeria infection and reveals different actin nucleation mechanisms during Listeria cell invasion and actin comet tail formation. MBio 6:e00598–15. doi:10.1128/mBio.00598-15

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonazzi M, Kühbacher A, Toledo-Arana A et al (2012) A common clathrin-mediated machinery co-ordinates cell–cell adhesion and bacterial internalization. Traffic 13:1653–1666. doi:10.1111/tra.12009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pizarro-Cerdá J, Bonazzi M, Cossart P (2010) Clathrin-mediated endocytosis: what works for small, also works for big. Bioessays 32:496–504. doi:10.1002/bies.200900172

    Article  PubMed  Google Scholar 

  8. Pizarro-Cerdá J, Cossart P (2009) Listeria monocytogenes membrane trafficking and lifestyle: the exception or the rule? Annu Rev Cell Dev Biol 25:649–670. doi:10.1146/annurev.cellbio.042308.113331

    Article  PubMed  Google Scholar 

  9. Ireton K, Payrastre B, Chap H et al (1996) A role for phosphoinositide 3-kinase in bacterial invasion. Science 274:780–782

    Article  CAS  PubMed  Google Scholar 

  10. Kühbacher A, Dambournet D, Echard A et al (2012) Phosphatidylinositol 5-phosphatase oculocerebrorenal syndrome of Lowe protein (OCRL) controls actin dynamics during early steps of Listeria monocytogenes infection. J Biol Chem 287:13128–13136. doi:10.1074/jbc.M111.315788

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pizarro-Cerdá J, Kühbacher A, Cossart P (2014) Phosphoinositides and host-pathogen interactions. Biochim Biophys Acta 1851:911–918. doi:10.1016/j.bbalip.2014.09.011

    Article  PubMed  Google Scholar 

  12. Seastone CV (1935) Pathogenic organisms of the genus Listerella. J Exp Med 62:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaillard JL, Berche P, Mounier J et al (1987) In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55:2822–2829

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Henry R, Shaughnessy L, Loessner MJ et al (2006) Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cell Microbiol 8:107–119. doi:10.1111/j.1462-5822.2005.00604.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mengaud J, Braun-Breton C, Cossart P (1991) Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol Microbiol 5:367–372

    Article  CAS  PubMed  Google Scholar 

  16. Vázquez-Boland JA, Kocks C, Dramsi S et al (1992) Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60:219–230

    PubMed  PubMed Central  Google Scholar 

  17. Barry RA, Bouwer HG, Portnoy DA, Hinrichs DJ (1992) Pathogenicity and immunogenicity of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 60:1625–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh R, Jamieson A, Cresswell P (2008) GILT is a critical host factor for Listeria monocytogenes infection. Nature 455:1244–1247. doi:10.1038/nature07344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radtke AL, Anderson KL, Davis MJ et al (2011) Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome. Proc Natl Acad Sci U S A 108:1633–1638. doi:10.1073/pnas.1013262108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davis MJ, Gregorka B, Gestwicki JE, Swanson JA (2012) Inducible renitence limits Listeria monocytogenes escape from vacuoles in macrophages. J Immunol 189:4488–4495. doi:10.4049/jimmunol.1103158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quereda JJ, Pizarro-Cerdá J, Balestrino D et al (2015) A dual microscopy-based assay to assess Listeria monocytogenes cellular entry and vacuolar escape. Appl Environ Microbiol 82(1):211–217. doi:10.1128/AEM.02302-15

  22. Mellouk N, Weiner A, Aulner N et al (2014) Shigella subverts the host recycling compartment to rupture its vacuole. Cell Host Microbe 16:517–530. doi:10.1016/j.chom.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  23. Mostowy S, Janel S, Forestier C et al (2011) A role for Septins in the interaction between the Listeria monocytogenes invasion protein InlB and the met receptor. Biophys J 100:1949–1959. doi:10.1016/j.bpj.2011.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quereda JJ, Pucciarelli MG (2014) Deletion of the membrane protein Lmo0412 increases the virulence of Listeria monocytogenes. Microbes Infect 16:623–632. doi:10.1016/j.micinf.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  25. Ripio MT, Domínguez-Bernal G, Lara M et al (1997) A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J Bacteriol 179:1533–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kühbacher A, Cossart P, Pizarro-Cerdá J (2014) Internalization assays for Listeria monocytogenes. In: Methods in molecular biology. Springer New York, New York, NY, pp 167–178

    Google Scholar 

Download references

Acknowledgments

We thank Servier Medical Art (http://www.servier.com/Powerpoint-image-bank) for providing drawings used in Fig. 1. Work in the laboratory of P.C. is supported by the Institut Pasteur (Unité des Interactions Bactéries-Cellules), the Institut National de la Santé et de la Recherche Médicale (Unité 604), the Institut National de la Recherche Agronomique (Unité Sous Contrat 2020), the Fondation Les Mousquetaires, and an European Research Council Advanced Grant (BacEpiCell 670823). The Imagopole is part of the FranceBioImaging infrastructure supported by the French National Research Agency (ANR-10-INSB-04-01, “Investments for the Future”) and is grateful to supports by Conseil de la Region Ile-de-France (program Sesame 2007, project Imagopole to S.S.) and from the Fondation Française pour la Recherche Médicale (FRM, Programme Grands Equipements to N.A.). J.E. is supported by the Institut Pasteur (PTR-460), by the Institut Pasteur Carnot-MIE program and by a European Research Council Starting Grant (RuptEffects 261166). J.P.C. is supported by the Institut Pasteur (PTR-460 and PTR-521) and by the French National Research Agency (ANR-15-CE15-0017). P.C. and J.E. acknowledge the LabEx consortium IBEID. P.C. is a Howard Hughes Medical Institute Senior International Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Pizarro-Cerdá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Quereda, J.J. et al. (2017). Assessing Vacuolar Escape of Listeria Monocytogenes . In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 1535. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6673-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6673-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6671-4

  • Online ISBN: 978-1-4939-6673-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics