Skip to main content

Detection of Senescence Markers During Mammalian Embryonic Development

  • Protocol
  • First Online:
Oncogene-Induced Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1534))

Abstract

Senescence-associated β-galactosidase (SAβ-gal) is a convenient histological technique used to identify senescent cells. Its ease of use is helpful to initially screen and detect senescent cells in heterogeneous cell populations both in vitro and in vivo. However, SAβ-gal staining is not an unequivocal marker of the senescent state, and diagnosis of such usually requires additional markers demonstrating an absence of proliferation and expression of cell-cycle inhibitors. Nonetheless, SAβ-gal remains one of the most widely used biomarkers of senescent cells. Recently, by measuring SAβ-gal activity, the expression of the cyclin-dependent kinase inhibitor p21 (waf1/cip1) and demonstrating a lack of proliferation, we identified senescent cells in the developing embryo. This chapter describes the methods for identifying cellular senescence in the embryo, detailing protocols for the detection of SAβ-gal activity in both sections and at the whole mount level, and immunohistochemistry protocols for the detection of additional biomarkers of senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  2. Serrano M et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  3. Kuilman T et al (2010) The essence of senescence. Genes Dev 24(22):2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmitt CA et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109(3):335–346

    Article  CAS  PubMed  Google Scholar 

  5. Narita M et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    Article  CAS  PubMed  Google Scholar 

  6. Zhang R et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8(1):19–30

    Article  CAS  PubMed  Google Scholar 

  7. Acosta JC et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6):1006–1018

    Article  CAS  PubMed  Google Scholar 

  8. Coppe JP et al (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuilman T et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133(6):1019–1031

    Article  CAS  PubMed  Google Scholar 

  10. Braig M et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660–665

    Article  CAS  PubMed  Google Scholar 

  11. Collado M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michaloglou C et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    Article  CAS  PubMed  Google Scholar 

  14. Baker DJ et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    Article  CAS  PubMed  Google Scholar 

  16. Storer M et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155(5):1119–1130

    Article  CAS  PubMed  Google Scholar 

  17. Munoz-Espin D et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5):1104–1118

    Article  CAS  PubMed  Google Scholar 

  18. Krizhanovsky V et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Demaria M et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurz DJ et al (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622

    CAS  PubMed  Google Scholar 

  23. Lee BY et al (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195

    Article  CAS  PubMed  Google Scholar 

  24. Debacq-Chainiaux F et al (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4(12):1798–1806

    Article  CAS  PubMed  Google Scholar 

  25. Baker DJ et al (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10(7):825–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keyes WM et al (2005) p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19(17):1986–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brady CA et al (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145(4):571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang T, Rivera-Perez JA (2014) Senescence-associated beta-galactosidase activity marks the visceral endoderm of mouse embryos but is not indicative of senescence. Genesis 52(4):300–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by Grants SAF2010-18829 and SAF2013-49082-P to W.M.K. from the Spanish Ministry for Economy and Competitiveness, the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) from the Generalitat de Catalunya, and CRG core funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Keyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Storer, M., Keyes, W.M. (2017). Detection of Senescence Markers During Mammalian Embryonic Development. In: Nikiforov, M. (eds) Oncogene-Induced Senescence. Methods in Molecular Biology, vol 1534. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6670-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6670-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6668-4

  • Online ISBN: 978-1-4939-6670-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics