Detection of Senescence Markers During Mammalian Embryonic Development

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1534)

Abstract

Senescence-associated β-galactosidase (SAβ-gal) is a convenient histological technique used to identify senescent cells. Its ease of use is helpful to initially screen and detect senescent cells in heterogeneous cell populations both in vitro and in vivo. However, SAβ-gal staining is not an unequivocal marker of the senescent state, and diagnosis of such usually requires additional markers demonstrating an absence of proliferation and expression of cell-cycle inhibitors. Nonetheless, SAβ-gal remains one of the most widely used biomarkers of senescent cells. Recently, by measuring SAβ-gal activity, the expression of the cyclin-dependent kinase inhibitor p21 (waf1/cip1) and demonstrating a lack of proliferation, we identified senescent cells in the developing embryo. This chapter describes the methods for identifying cellular senescence in the embryo, detailing protocols for the detection of SAβ-gal activity in both sections and at the whole mount level, and immunohistochemistry protocols for the detection of additional biomarkers of senescence.

Key words

Cellular senescence SAβ-gal Whole-mount staining Embryo Biomarker Development Limb Neural tube p21 Apoptosis 

References

  1. 1.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefPubMedGoogle Scholar
  2. 2.
    Serrano M et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602CrossRefPubMedGoogle Scholar
  3. 3.
    Kuilman T et al (2010) The essence of senescence. Genes Dev 24(22):2463–2479CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schmitt CA et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109(3):335–346CrossRefPubMedGoogle Scholar
  5. 5.
    Narita M et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang R et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8(1):19–30CrossRefPubMedGoogle Scholar
  7. 7.
    Acosta JC et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6):1006–1018CrossRefPubMedGoogle Scholar
  8. 8.
    Coppe JP et al (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kuilman T et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133(6):1019–1031CrossRefPubMedGoogle Scholar
  10. 10.
    Braig M et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660–665CrossRefPubMedGoogle Scholar
  11. 11.
    Collado M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642CrossRefPubMedGoogle Scholar
  12. 12.
    Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Michaloglou C et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724CrossRefPubMedGoogle Scholar
  14. 14.
    Baker DJ et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705CrossRefPubMedGoogle Scholar
  16. 16.
    Storer M et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155(5):1119–1130CrossRefPubMedGoogle Scholar
  17. 17.
    Munoz-Espin D et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5):1104–1118CrossRefPubMedGoogle Scholar
  18. 18.
    Krizhanovsky V et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Demaria M et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676–685CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kurz DJ et al (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622PubMedGoogle Scholar
  23. 23.
    Lee BY et al (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195CrossRefPubMedGoogle Scholar
  24. 24.
    Debacq-Chainiaux F et al (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4(12):1798–1806CrossRefPubMedGoogle Scholar
  25. 25.
    Baker DJ et al (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10(7):825–836CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Keyes WM et al (2005) p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19(17):1986–1999CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brady CA et al (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145(4):571–583CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang T, Rivera-Perez JA (2014) Senescence-associated beta-galactosidase activity marks the visceral endoderm of mouse embryos but is not indicative of senescence. Genesis 52(4):300–308CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
  2. 2.Universitat Pompeu Fabra (UPF)BarcelonaSpain
  3. 3.Program in Neurosciences and Mental HealthHospital for Sick ChildrenTorontoCanada

Personalised recommendations