Skip to main content

Sudan Black B, The Specific Histochemical Stain for Lipofuscin: A Novel Method to Detect Senescent Cells

  • Protocol
  • First Online:
Book cover Oncogene-Induced Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1534))

Abstract

The Sudan-Black-B (SBB) histochemical stain is well known to specifically react against lipofuscin, an aggregate of oxidized proteins, lipids, and metals. Lipofuscin is related to many ageing processes. It is also known to accumulate in senescent cells. We recently proved that lipofuscin detection, when applying the SBB staining, is highly specific for the visualization of senescent cells. Here, we present in detail this SBB method that can detect senescent cells in any material, irrespective of its preparation. This provides unique advantages not only in understanding physiological processes and the pathophysiology of various diseases but also in estimating the response to therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorgoulis VG, Halazonetis T (2010) Oncogene‐induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22:816–827

    Article  CAS  PubMed  Google Scholar 

  2. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen QM (2000) Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints. Ann N Y Acad Sci 908:111–125

    Article  CAS  PubMed  Google Scholar 

  4. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al (2006) Oncogene‐induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    Article  CAS  PubMed  Google Scholar 

  6. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  CAS  PubMed  Google Scholar 

  7. Liontos M, Koutsami M, Sideridou M, Evangelou K, Kletsas D, Levy B et al (2007) Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res 67:10899–10909

    Article  CAS  PubMed  Google Scholar 

  8. Liontos M, Niforou K, Velimezi G, Vougas K, Evangelou K, Apostolopoulou K et al (2009) Modulation of the E2F1‐driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas. Am J Pathol 175:376–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

    Article  CAS  PubMed  Google Scholar 

  10. Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476

    Article  CAS  PubMed  Google Scholar 

  11. Bernardes de Jesus B, Blasco MA (2012) Assessing cell and organ senescence biomarkers. Circ Res 111:97–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Debacq‐Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence‐associated beta‐galactosidase (SA‐betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806

    Article  PubMed  Google Scholar 

  15. Cairney CJ, Bilsland AE, Evans TR, Roffey J, Bennett DC, Narita M et al (2012) Cancer cell senescence: a new frontier in drug development. Drug Discov Today 17:269–276

    Article  CAS  PubMed  Google Scholar 

  16. Binet R, Ythier D, Robles AI, Collado M, Larrieu D, Fonti C et al (2009) WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway. Cancer Res 69:9183–9191

    Article  CAS  PubMed  Google Scholar 

  17. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  CAS  PubMed  Google Scholar 

  18. Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111

    Article  CAS  PubMed  Google Scholar 

  19. Jung T, Höhn A, Grune T (2010) Lipofuscin: detection and quantification by microscopic techniques. Methods Mol Biol 594:173–193

    Article  CAS  PubMed  Google Scholar 

  20. Höhn A, Jung T, Grimm S, Grune T (2010) Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells. Free Radic Biol Med 48:1100–1108

    Article  PubMed  Google Scholar 

  21. Dowsonm JH, Harris SJ (1981) Quantitative studies of the autofluorescence derived from neuronal lipofuscin. J Microsc 123:249–258

    Article  Google Scholar 

  22. Jung TAH, Grune T (2010) Advanced protocols in oxidative stress II, methods in molecular biology. Humana Press, New York

    Google Scholar 

  23. Bancroft JD, Gamble M (2002) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh

    Google Scholar 

  24. Glees P, Hasan M (1976) Lipofuscin in neuronal aging and diseases. Norm Pathol Anat (Stuttg) 32:1–68

    CAS  Google Scholar 

  25. Robles LJ (1978) Accumulation and identification of lipofuscin-like pigment in the neurons of Bulla gouldiana (Gastropoda: Opisthobranchia). Mech Ageing Dev 7:53–64

    Article  CAS  PubMed  Google Scholar 

  26. Kumar GL (2010) Special stains and H & E education guide. Dako, Carpinteria, CA

    Google Scholar 

  27. Gatenby JB, Moussa TA (1949) The sudan black B technique in cytology. J R Microsc Soc 69:72–75

    Article  CAS  PubMed  Google Scholar 

  28. Rasmussen GL (1961) A method of staining the statoacoustic nerve in bulk with Sudan black B. Anat Rec 139:465–469

    Article  CAS  PubMed  Google Scholar 

  29. Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP et al (2013) Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 5:37–50

    Article  CAS  PubMed  Google Scholar 

  30. Petrakis TG, Komseli ES, Papaioannou M, Vougas K, Polyzos A, Myrianthopoulos V et al (2016). Exploring and exploiting the systemic effects of deregulated replication licensing. Semin Cancer Biol. 37–38:3–15

    Google Scholar 

  31. Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ et al (2016). Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol 18(7):777–789

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Bionian Cluster, the Greek GSRT program of Excellence II (Aristeia II, Grant number 3020) and DHI, Medical Group, Athens, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis G. Gorgoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Evangelou, K., Gorgoulis, V.G. (2017). Sudan Black B, The Specific Histochemical Stain for Lipofuscin: A Novel Method to Detect Senescent Cells. In: Nikiforov, M. (eds) Oncogene-Induced Senescence. Methods in Molecular Biology, vol 1534. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6670-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6670-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6668-4

  • Online ISBN: 978-1-4939-6670-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics