Skip to main content

Structural Toxicity: Hypertrophy Models of Human Pluripotent Stem Cell-Derived Cardiomyocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Human pluripotent stem cells (hPSC) are investigated as a source of authentic human cardiac cells for drug discovery and toxicological tests. Cell-based assays performed using an automated fluorescence imaging platform and high-content analysis are valuable in characterizing hypertrophic states that may be induced in hPSC-derived cardiomyocytes upon exposure to cardiotoxic compounds. In high-purity populations of hPSC-derived cardiomyocytes loaded with cell tracer probes and other cell markers, detailed hypertrophic profiles can be assessed based on information captured at cellular and subcellular levels.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Abramoff MD, Magalhaes PJ, Ram SJ (2016) Image Processing with ImageJ. Biophoton Int 7(4):36–43

    Google Scholar 

  2. Aggarwal P, Turner A, Matter A, Kattman SJ, Stoddard A, Lorier R, Swanson BJ, Arnett DK, Broeckel U (2014) RNA expression profiling of human iPSC-derived cardiomyocytes in a cardiac hypertrophy model. PLoS One 9(9), e108051

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ansari N, Muller S, Stelzer EH, Pampaloni F (2013) Quantitative 3D cell-based assay performed with cellular spheroids and fluorescence microscopy. Methods Cell Biol 113:295–309

    Article  CAS  PubMed  Google Scholar 

  4. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(3):213–232

    Article  CAS  PubMed  Google Scholar 

  5. Bosman A, Letourneau A, Sartiani L, Del LM, Ronzoni F, Kuziakiv R, Tohonen V, Zucchelli M, Santoni F, Guipponi M, Dumevska B, Hovatta O, Antonarakis SE, Jaconi ME (2015) Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21. Stem Cells 33(5):1434–1446

    Article  CAS  PubMed  Google Scholar 

  6. Boutros M, Bras LP, Huber W (2006) Analysis of cell-based RNAi screens. Genome Biol 7(7):R66

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bruckner R, Mugge A, Scholz H (1985) Existence and functional role of alpha 1-adrenoceptors in the mammalian heart. J Mol Cell Cardiol 17(7):639–645

    Article  CAS  PubMed  Google Scholar 

  8. Bupha-Intr T, Haizlip KM, Janssen PM (2012) Role of endothelin in the induction of cardiac hypertrophy in vitro. PLoS One 7(8), e43179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burridge PW, Holmstrom A, Wu JC (2015) Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet 87:21

    PubMed  PubMed Central  Google Scholar 

  10. Carlson C, Koonce C, Aoyama N, Einhorn S, Fiene S, Thompson A, Swanson B, Anson B, Kattman S (2013) Phenotypic screening with human iPS cell-derived cardiomyocytes: HTS-compatible assays for interrogating cardiac hypertrophy. J Biomol Screen 18(10):1203–1211

    Article  PubMed  Google Scholar 

  11. Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465(7299):808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Concas V, Laurent S, Brisac AM, Perret C, Safar M (1989) Endothelin has potent direct inotropic and chronotropic effects in cultured heart cells. J Hypertens Suppl 7(6):S96–S97

    Article  CAS  PubMed  Google Scholar 

  13. Copeland J, Shamu CE (2016) Informatics considerations. In: An introduction to high content screening, Wiley, pp 81–102. Steven A. Haney, Douglas Bowman, Arijit Chakravarty (Edt); Anthony Davies, Caroline Shamu (Associate Editors) John Wiley and Sons Inc. Hoboken, New Jersey

    Google Scholar 

  14. Dambrot C, Braam SR, Tertoolen LG, Birket M, Atsma DE, Mummery CL (2014) Serum supplemented culture medium masks hypertrophic phenotypes in human pluripotent stem cell derived cardiomyocytes. J Cell Mol Med 18(8):1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688

    Article  CAS  PubMed  Google Scholar 

  16. Drawnel FM, Archer CR, Roderick HL (2013) The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 168(2):296–317

    Article  CAS  PubMed  Google Scholar 

  17. Drawnel FM, Boccardo S, Prummer M, Delobel F, Graff A, Weber M, Gerard R, Badi L, Kam-Thong T, Bu L, Jiang X, Hoflack JC, Kiialainen A, Jeworutzki E, Aoyama N, Carlson C, Burcin M, Gromo G, Boehringer M, Stahlberg H, Hall BJ, Magnone MC, Kolaja K, Chien KR, Bailly J, Iacone R (2014) Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep 9(3):810–821

    Article  CAS  PubMed  Google Scholar 

  18. Foldes G, Matsa E, Kriston-Vizi J, Leja T, Amisten S, Kolker L, Kodagoda T, Dolatshad NF, Mioulane M, Vauchez K, Aranyi T, Ketteler R, Schneider MD, Denning C, Harding SE (2014) Aberrant alpha-adrenergic hypertrophic response in cardiomyocytes from human induced pluripotent cells. Stem Cell Rep 3(5):905–914

    Article  CAS  Google Scholar 

  19. Foldes G, Mioulane M, Wright JS, Liu AQ, Novak P, Merkely B, Gorelik J, Schneider MD, Ali NN, Harding SE (2011) Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy? J Mol Cell Cardiol 50(2):367–376

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ghosh RN, Lapets O, Haskins JR (2007) Characteristics and value of directed algorithms in high content screening. Methods Mol Biol 356:63–81

    PubMed  Google Scholar 

  21. Hansen A, Eder A, Bonstrup M, Flato M, Mewe M, Schaaf S, Aksehirlioglu B, Schwoerer AP, Uebeler J, Eschenhagen T (2010) Development of a drug screening platform based on engineered heart tissue. Circ Res 107(1):35–44

    Article  CAS  PubMed  Google Scholar 

  22. Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, Haghighi A, Homsy J, Hubner N, Church G, Cook SA, Linke WA, Chen CS, Seidman JG, Seidman CE (2015) HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349(6251):982–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 117(1):80–8

    Google Scholar 

  24. Ketteler R, Kriston-Vizi J (2016) High-content screening in cell biology. In: Bradshaw R, Stahl P (eds) Encyclopedia of cell biology, 4th edn. Academic, Waltham, MA, pp 234–244

    Chapter  Google Scholar 

  25. Kijlstra JD, Hu D, Mittal N, Kausel E, van der Meer P, Garakani A, Domian IJ (2015) Integrated analysis of contractile kinetics, force generation, and electrical activity in single human stem cell-derived cardiomyocytes. Stem Cell Rep 5(6):1226–1238

    Article  Google Scholar 

  26. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9(4):273–285

    Article  CAS  PubMed  Google Scholar 

  27. Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, Han L, Yen M, Wang Y, Sun N, Abilez OJ, Hu S, Ebert AD, Navarrete EG, Simmons CS, Wheeler M, Pruitt B, Lewis R, Yamaguchi Y, Ashley EA, Bers DM, Robbins RC, Longaker MT, Wu JC (2013) Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12(1):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, Bett GC, Rasmusson RL, Denning C, Yang L (2015) Modeling and studying mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from Duchenne Muscular Dystrophy (DMD) patients. Dis Model Mech 8(5):457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McKinsey TA, Kass DA (2007) Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov 6(8):617–635

    Article  CAS  PubMed  Google Scholar 

  30. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    Article  CAS  PubMed  Google Scholar 

  31. R Core Development Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  32. Ren R, Oakley RH, Cruz-Topete D, Cidlowski JA (2012) Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology 153(11):5346–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rokosh DG, Stewart AF, Chang KC, Bailey BA, Karliner JS, Camacho SA, Long CS, Simpson PC (1996) α1-adrenergic receptor subtype mRNAs are differentially regulated by α1-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo. Repression of α1B and α1D but induction of α1C. J Biol Chem 271(10):5839–5843

    Article  CAS  PubMed  Google Scholar 

  34. Schaaf S, Shibamiya A, Mewe M, Eder A, Stohr A, Hirt MN, Rau T, Zimmermann WH, Conradi L, Eschenhagen T, Hansen A (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6(10), e26397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  36. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4(130):130ra47.

    Google Scholar 

  38. Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, Kusumoto D, Kuroda Y, Okata S, Suzuki T, Inohara T, Arimura T, Makino S, Kimura K, Kimura A, Furukawa T, Carrier L, Node K, Fukuda K (2014) Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc 3(6), e001263

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20(6):616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu H, Lee J, Vincent LG, Wang Q, Gu M, Lan F, Churko JM, Sallam KI, Matsa E, Sharma A, Gold JD, Engler AJ, Xiang YK, Bers DM, Wu JC (2015) Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised beta-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell 17(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhi D, Irvin MR, Gu CC, Stoddard AJ, Lorier R, Matter A, Rao DC, Srinivasasainagendra V, Tiwari HK, Turner A, Broeckel U, Arnett DK (2012) Whole-exome sequencing and an iPSC-derived cardiomyocyte model provides a powerful platform for gene discovery in left ventricular hypertrophy. Front Genet 3:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhong H, Minneman KP (1999) Alpha1-adrenoceptor subtypes. Eur J Pharmacol 375(1–3):261–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Medical Research Council core funding to the MRC-UCL University Unit (Ref. MC_EX_G0800785) (JKV), the European Union Seventh Framework Programme (FP7/2007-2013, grant no. PIRG08-GA-2010-276811) (JKV), and the Hungarian Scientific Research Fund (OTKA K-105555) (GF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janos Kriston-Vizi or Gábor Földes .

Editor information

Editors and Affiliations

Glossary

ANF

Atrial natriuretic peptide

BNP

B-type natriuretic peptide

ESC

Embryonic stem cell

GSK

Glycogen synthase kinase

HCM

Hypertrophic cardiomyopathy

hESC

Human embryonic stem cell

hESC-CM

Human embryonic stem cell-derived cardiomyocyte

hiPSC

Human induced pluripotent stem cell

hiPSC-CM

Human induced pluripotent stem cell-derived cardiomyocyte

hPSC

Human pluripotent stem cell

hPSC-CM

Human pluripotent stem cell-derived cardiomyocyte

MAPK

Mitogen activated protein kinase

NFAT

Nuclear factor of activated T-cells

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kriston-Vizi, J., Harding, S.E., Földes, G. (2017). Structural Toxicity: Hypertrophy Models of Human Pluripotent Stem Cell-Derived Cardiomyocytes. In: Clements, M., Roquemore, L. (eds) Stem Cell-Derived Models in Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6661-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6661-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6659-2

  • Online ISBN: 978-1-4939-6661-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics