Skip to main content

Construction of the Leaf Senescence Database and Functional Assessment of Senescence-Associated Genes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1533))

Abstract

Leaf senescence is the last phase of plant development and a highly coordinated process regulated by a large number of senescence-associated genes (SAGs). By broad literature survey, we constructed a leaf senescence database (LSD) in 2011 and updated it to Version 2.0 in 2014 (http://www.eplantsenescence.org/ and http://psd.cbi.pku.edu.cn/) which contains a total of 5357 genes and 324 mutants from 44 species. These SAGs were retrieved based on genetic, genomic, proteomic, physiological, or other experimental evidence and were classified into different categories according to their functions in leaf senescence or morphological phenotype of mutants. To provide comprehensive information for SAGs, we made extensive annotation by both manual and computational approaches. In addition, we predicted putative orthologues of the SAGs in other species. LSD has a user-friendly interface to allow users to make text queries or BLAST searches and to download SAGs sequences for local analysis. Functional analyses of putative SAGs reveal that WRKY75, AZF2, NAC16, and WRKY26 are positive regulators of leaf senescence, while MKP2 and CTR1 perform negative regulation to leaf senescence. This database has been served as a valuable resource for basic research on the function of SAGs and evolution of plant leaf senescence, as well as for the exploration of genetic traits in agronomically important plants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  2. Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol 54:526–539

    Article  CAS  PubMed  Google Scholar 

  5. Liu X, Li Z, Jiang Z, Zhao Y, Peng J, Jin J, Guo H, Luo J (2011) LSD: a leaf senescence database. Nucleic Acids Res 39:D1103–D1107

    Article  CAS  PubMed  Google Scholar 

  6. Li Z, Zhao Y, Liu X, Peng J, Guo H, Luo J (2014) LSD 2.0: an update of the leaf senescence database. Nucleic Acids Res 42:D1200–D1205

    Article  CAS  PubMed  Google Scholar 

  7. Ay N, Janack B, Humbeck K (2014) Epigenetic control of plant senescence and linked processes. J Exp Bot 65:3875–3887

    Article  PubMed  Google Scholar 

  8. Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K (2009) Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:333–346

    Article  CAS  PubMed  Google Scholar 

  9. Brusslan JA, Bonora G, Rus-Canterbury AM, Tariq F, Jaroszewicz A, Pellegrini M (2015) A genome-wide chronological study of gene expression and two histone modifications, H3K4me3 and H3K9ac, during developmental leaf senescence. Plant Physiol 168:1246–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu X, Wu J, Wang J, Zhao S, Li Z, Kong L, Gu X, Luo J, Gao G (2009) WebLab: a data-centric, knowledge-sharing bioinformatic platform. Nucleic Acids Res 37:W33–W39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–D368

    Article  CAS  PubMed  Google Scholar 

  14. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zdobnov EM, Apweiler R (2001) InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

  16. Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, Millar HA (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:D1185–D1191

    Article  CAS  PubMed  Google Scholar 

  17. Kim YS, Sakuraba Y, Han SH, Yoo SC, Paek NC (2013) Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiol 54:1660–1672

    Article  CAS  PubMed  Google Scholar 

  18. Jing HC, Schippers JH, Hille J, Dijkwel PP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Article  CAS  PubMed  Google Scholar 

  19. Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Guo or Jingchu Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, Z. et al. (2017). Construction of the Leaf Senescence Database and Functional Assessment of Senescence-Associated Genes. In: van Dijk, A. (eds) Plant Genomics Databases. Methods in Molecular Biology, vol 1533. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6658-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6658-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6656-1

  • Online ISBN: 978-1-4939-6658-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics