Skip to main content

A TAL-Based Reporter Assay for Monitoring Type III-Dependent Protein Translocation in Xanthomonas

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1531))

Abstract

Gram-negative plant- and animal-pathogenic bacteria use type III secretion (T3S) systems to translocate effector proteins into eukaryotic host cells. Type III-dependent delivery of effector proteins depends on a secretion and translocation signal, which is often located in the N-terminal protein region and is not conserved on the amino acid level. Translocation signals in effector proteins have been experimentally confirmed by employing reporter proteins, which are specifically activated inside eukaryotic cells. Here, we describe a method to monitor effector protein translocation using a deletion derivative of the transcription activator-like (TAL) effector protein AvrBs3 as reporter. AvrBs3 is a type III effector of the tomato and pepper pathogen X. campestris pv. vesicatoria and is imported into the plant cell nucleus where it binds to specific promoter elements of target genes and activates their transcription. The N-terminal deletion derivative AvrBs3∆2 lacks a functional T3S and translocation signal but contains the effector domain and induces plant gene expression when fused to a functional translocation signal. In resistant pepper plants, AvrBs3 and translocated AvrBs3∆2 fusion proteins induce the expression of the Bs3-resistance gene, which triggers a strong, macroscopically visible defense response. The protocol for translocation assays with AvrBs3∆2 fusion proteins includes (1) the generation of expression constructs by Golden Gate cloning, (2) the transfer of expression constructs into bacterial recipient strains, (3) in vitro secretion assays with reporter fusion proteins and (4) infection of AvrBs3-responsive pepper plants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206

    Article  CAS  PubMed  Google Scholar 

  2. Büttner D (2012) Protein export according to schedule—architecture, assembly and regulation of type III secretion systems from plant and animal pathogenic bacteria. Microbiol Mol Biol Rev 76:262–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galan JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mattei PJ, Faudry E, Job V, Izore T, Attree I, Dessen A (2011) Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 278:414–426

    Article  CAS  PubMed  Google Scholar 

  5. Dean P (2011) Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 35:1100–1125

    Article  CAS  PubMed  Google Scholar 

  6. Feng F, Zhou JM (2012) Plant-bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol 15:469–476

    Article  CAS  PubMed  Google Scholar 

  7. Wu L, Chen H, Curtis C, Fu ZQ (2014) Go in for the kill. How plants deploy effector-triggered immunity to combat pathogens. Virulence 5:710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  PubMed  Google Scholar 

  9. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  10. Kvitko BH, Park DH, Velasquez AC, Wei CF, Russell AB, Martin GB, Schneider DJ, Collmer A (2009) Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 5:e1000388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buchko GW, Niemann G, Baker ES, Belov ME, Smith RD, Heffron F, Adkins JN, McDermott JE (2010) A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins. Mol Biosyst 6:2448–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Sun M, Bao H, White AP (2013) T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 8:e58173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes HW, Horn M, Rattei T (2009) Sequence-based prediction of type III secreted proteins. PLoS Pathog 5:e1000376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Löwer M, Schneider G (2009) Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One 4:e5917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Samudrala R, Heffron F, McDermott JE (2009) Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 5:e1000375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sory MP, Cornelis GR (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14:583–594

    Article  CAS  PubMed  Google Scholar 

  17. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  18. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA-binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  19. Römer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    Article  CAS  PubMed  Google Scholar 

  20. Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651

    Article  CAS  PubMed  Google Scholar 

  21. Szurek B, Rossier O, Hause G, Bonas U (2002) Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol 46:13–23

    Article  CAS  PubMed  Google Scholar 

  22. Noël L, Thieme F, Gäbler J, Büttner D, Bonas U (2003) XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J Bacteriol 185:7092–7102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Büttner D, Lorenz C, Weber E, Bonas U (2006) Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from Xanthomonas campestris pv. vesicatoria. Mol Microbiol 59:513–527

    Article  CAS  PubMed  Google Scholar 

  24. Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012) Analyses of new type III effectors from Xanthomonas uncover XopB and XopS as suppressors of plant immunity. New Phytol 195:894–911

    Article  CAS  PubMed  Google Scholar 

  25. Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007) New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe Interact 20:1250–1261

    Article  CAS  PubMed  Google Scholar 

  26. Daniels MJ, Barber CE, Turner PC, Sawczyc MK, Byrde RJW, Fielding AH (1984) Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J 3:3323–3328

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kovach ME, Elzer PH, Hill DS, Robertson MA, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  30. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Canteros BI (1990) Diversity of plasmids and plasmid-encoded phenotypic traits in Xanthomonas campestris pv. vesicatoria. PhD thesis, University of Florida, Gainesville, FL, USA

    Google Scholar 

  32. Wengelnik K, Rossier O, Bonas U (1999) Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol 181:6828–6831

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wengelnik K, Van den Ackerveken G, Bonas U (1996) HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact 9:704–712

    Article  CAS  PubMed  Google Scholar 

  34. Rossier O, Wengelnik K, Hahn K, Bonas U (1999) The Xanthomonas Hrp type III system secretes proteins from plant and mammalian pathogens. Proc Natl Acad Sci U S A 96:9368–9373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bolchi A, Ottonello S, Petrucco S (2005) A general one-step method for the cloning of PCR products. Biotechnol Appl Biochem 42:205–209

    Article  CAS  PubMed  Google Scholar 

  36. Engler C, Marillonnet S (2011) Generation of families of construct variants using Golden Gate shuffling. Methods Mol Biol 729:167–181

    Article  CAS  PubMed  Google Scholar 

  37. Engler C, Marillonnet S (2013) Combinatorial DNA assembly using Golden Gate cloning. Methods Mol Biol 1073:141–156

    Article  CAS  PubMed  Google Scholar 

  38. Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V, Bonas U, Büttner D (2010) Functional characterization of the Xps and Xcs type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria. New Phytol 187:983–1002

    Article  CAS  PubMed  Google Scholar 

  39. Kousik CS, Ritchie DF (1998) Response of bell pepper cultivars to bacterial spot pathogen races that individually overcome major resistance genes. Plant Dis 82:181–186

    Article  Google Scholar 

  40. Büttner D, Nennstiel D, Klüsener B, Bonas U (2002) Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J Bacteriol 184:2389–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lorenz C, Büttner D (2009) Functional characterization of the type III secretion ATPase HrcN from the plant pathogen Xanthomonas campestris pv. vesicatoria. J Bacteriol 191:1414–1428

    Article  CAS  PubMed  Google Scholar 

  42. Minsavage GV, Dahlbeck D, Whalen MC, Kearny B, Bonas U, Staskawicz BJ, Stall RE (1990) Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria–pepper interactions. Mol Plant Microbe Interact 3:41–47

    Article  CAS  Google Scholar 

  43. Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Büttner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Drehkopf, S., Hausner, J., Jordan, M., Scheibner, F., Bonas, U., Büttner, D. (2017). A TAL-Based Reporter Assay for Monitoring Type III-Dependent Protein Translocation in Xanthomonas . In: Nilles, M., Condry, D. (eds) Type 3 Secretion Systems. Methods in Molecular Biology, vol 1531. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6649-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6649-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6647-9

  • Online ISBN: 978-1-4939-6649-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics