Skip to main content

Introduction to Type III Secretion Systems

  • Protocol
  • First Online:
Book cover Type 3 Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1531))

Abstract

Type III secretion (T3S) systems are found in a large number of gram-negative bacteria where they function to manipulate the biology of infected hosts. Hosts targeted by T3S systems are widely distributed in nature and are represented by animals and plants. T3S systems are found in diverse genera of bacteria and they share a common core structure and function. Effector proteins are delivered by T3S systems into targeted host cells without prior secretion of the effectors into the environment. Instead, an assembled translocon structure functions to translocate effectors across eukaryotic cell membranes. In many cases, T3S systems are essential virulence factors and in some instances they promote symbiotic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galán JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573

    Article  CAS  PubMed  Google Scholar 

  2. Preston GM (2007) Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe 2:291–294

    Article  CAS  PubMed  Google Scholar 

  3. Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811–825

    Article  CAS  PubMed  Google Scholar 

  4. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107:3076–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Egan F, Barret M, O’Gara F (2014) The SPI-1-like Type III secretion system: more roles than you think. Front Plant Sci 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Moraes TF, Spreter T, Strynadka NC (2008) Piecing together the type III injectisome of bacterial pathogens. Curr Opin Struct Biol 18:258–266

    Article  CAS  PubMed  Google Scholar 

  8. Gauthier A, Finlay BB (1998) Protein translocation: delivering virulence into the host cell. Curr Biol 8:R768–R770

    Article  CAS  PubMed  Google Scholar 

  9. Mueller CA, Broz P, Cornelis GR (2008) The type III secretion system tip complex and translocon. Mol Microbiol 68:1085–1095

    Article  CAS  PubMed  Google Scholar 

  10. Deane JE, Cordes FS, Roversi P, Johnson S, Kenjale R, Picking WD, Picking WL, Lea SM, Blocker A (2006) Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:302–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Ouellette AN, Egan CW, Rathinavelan T, Im W, De Guzman RN (2007) Differences in the electrostatic surfaces of the type III secretion needle proteins PrgI, BsaL, and MxiH. J Mol Biol 371:1304–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A (2001) Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol 39:652–663

    Article  CAS  PubMed  Google Scholar 

  13. Cordes FS, Daniell S, Kenjale R, Saurya S, Picking WL, Picking WD, Booy F, Lea SM, Blocker A (2005) Helical packing of needles from functionally altered Shigella type III secretion systems. J Mol Biol 354:206–211

    Article  CAS  PubMed  Google Scholar 

  14. Blocker AJ, Deane JE, Veenendaal AKJ, Roversi P, Hodgkinson JL, Johnson S, Lea SM (2008) What’s the point of the type III secretion system needle? Proc Natl Acad Sci U S A 105:6507–6513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun P, Tropea JE, Austin BP, Cherry S, Waugh DS (2008) Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. J Mol Biol 377:819–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A (2012) Atomic model of the type III secretion system needle. Nature 486:276–279

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mota LJ, Journet L, Sorg I, Agrain C, Cornelis GR (2005) Bacterial injectisomes: needle length does matter. Science 307:1278

    Article  PubMed  Google Scholar 

  18. Dean P (2011) Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 35:1100–1125

    Article  CAS  PubMed  Google Scholar 

  19. Cornelis GR (1998) The Yersinia deadly kiss. J Bacteriol 180:5495–5504

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Izoré T, Job V, Dessen A (2011) Biogenesis, regulation, and targeting of the type III secretion system. Structure 19:603–612

    Article  CAS  PubMed  Google Scholar 

  21. Edgren T, Forsberg A, Rosqvist R, Wolf-Watz H (2012) Type III secretion in Yersinia: injectisome or not? PLoS Pathog 8:e1002669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pettersson J, Nordfelth R, Dubinina E, Bergman T, Gustafsson M, Magnusson KE, Wolf-Watz H (1996) Modulation of virulence factor expression by pathogen target cell contact. Science 273:1231–1233

    Article  CAS  PubMed  Google Scholar 

  23. Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL, Picking WD, Blocker A (2005) The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem 280:42929–42937

    Article  CAS  PubMed  Google Scholar 

  24. Sato H, Frank DW (2011) Multi-functional characteristics of the Pseudomonas aeruginosa type III needle-tip protein, PcrV; comparison to orthologs in other gram-negative bacteria. Front Microbiol 2:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torruellas J, Jackson MW, Pennock JW, Plano GV (2005) The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol 57:1719–1733

    Article  CAS  PubMed  Google Scholar 

  26. Amedei A, Niccolai E, Marino L, D’Elios MM (2011) Review Article: Role of immune response in Yersinia pestis infection. J Infect Dev Ctries 5(9):628–639

    Article  CAS  PubMed  Google Scholar 

  27. Böhme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, Pisano F, Thiermann T, Wolf-Watz H, Narberhaus F, Dersch P (2012) Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 8:e1002518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR (2010) Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J 29:1928–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jackson MW, Plano GV (2000) Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol Lett 186:85–90

    Article  CAS  PubMed  Google Scholar 

  31. Sorg I, Wagner S, Amstutz M, Müller SA, Broz P, Lussi Y, Engel A, Cornelis GR (2007) YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 26:3015–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun W, Curtiss R (2012) Amino acid substitutions in LcrV at putative sites of interaction with toll-like receptor 2 do not affect the virulence of Yersinia pestis. Microb Pathog 53(5–6):198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Broz P, Mueller CA, Müller SA, Philippsen A, Sorg I, Engel A, Cornelis GR (2007) Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol 65:1311–1320

    Article  CAS  PubMed  Google Scholar 

  34. Matteï P-JJ, Faudry E, Job V, Izoré T, Attree I, Dessen A (2011) Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 278:414–426

    Article  CAS  PubMed  Google Scholar 

  35. Mueller CA, Broz P, Müller SA, Ringler P, Erne-Brand F, Sorg I, Kuhn M, Engel A, Cornelis GR (2005) The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310:674–676

    Article  CAS  PubMed  Google Scholar 

  36. Veenendaal AKJ, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF, Blocker AJ (2007) The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63:1719–1730

    Article  CAS  PubMed  Google Scholar 

  37. Bölin I, Portnoy DA, Wolf-Watz H (1985) Expression of the temperature-inducible outer membrane proteins of yersiniae. Infect Immun 48:234–240

    PubMed  PubMed Central  Google Scholar 

  38. Hamad MA, Nilles ML (2007) Structure-function analysis of the C-terminal domain of LcrV from Yersinia pestis. J Bacteriol 189:6734–6739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matson JS, Nilles ML (2001) LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis. J Bacteriol 183:5082–5091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nilles ML, Williams AW, Skrzypek E, Straley SC (1997) Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J Bacteriol 179:1307–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Skrzypek E, Straley SC (1995) Differential effects of deletions in lcrV on secretion of V antigen, regulation of the low-Ca2+ response, and virulence of Yersinia pestis. J Bacteriol 177:2530–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Day JB, Plano GV (1998) A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol Microbiol 30:777–788

    Article  CAS  PubMed  Google Scholar 

  43. Forsberg A, Viitanen AM, Skurnik M, Wolf-Watz H (1991) The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol 5:977–986

    Article  CAS  PubMed  Google Scholar 

  44. Bergman T, Håkansson S, Forsberg A, Norlander L, Macellaro A, Bäckman A, Bölin I, Wolf-Watz H (1991) Analysis of the V antigen lcrGVH-yopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV. J Bacteriol 173:1607–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Celli J, Deng W, Finlay BB (2000) Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside. Cell Microbiol 2:1–9

    Article  CAS  PubMed  Google Scholar 

  46. Jarvis KG, Kaper JB (1996) Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system. Infect Immun 64:4826–4829

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou M, Guo Z, Duan Q, Hardwidge PR, Zhu G (2014) Escherichia coli type III secretion system 2: a new kind of T3SS? Vet Res 45:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, Lai LC, McNamara BP, Donnenberg MS, Kaper JB (1998) The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28:1–4

    Article  CAS  PubMed  Google Scholar 

  49. Gauthier A, Puente JL, Finlay BB (2003) Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun 71:3310–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Broz P, Ohlson MB, Monack DM (2012) Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 3:62–70

    Article  PubMed  PubMed Central  Google Scholar 

  51. Garai P, Gnanadhas DP, Chakravortty D (2012) Salmonella enterica serovars Typhimurium and Typhi as model organisms: revealing paradigm of host-pathogen interactions. Virulence 3:377–388

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li J, Overall CC, Nakayasu ES, Kidwai AS, Jones MB, Johnson RC, Nguyen NT, McDermott JE, Ansong C, Heffron F, Cambronne ED, Adkins JN (2015) Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ(E)-regulated SPI-2 gene expression. Front Microbiol 6:27

    PubMed  PubMed Central  Google Scholar 

  53. Phalipon A, Sansonetti PJ (2007) Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 85:119–129

    Article  CAS  PubMed  Google Scholar 

  54. Tran Van Nhieu G, Ben-Ze’ev A, Sansonetti PJ (1997) Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J 16:2717–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bröms JE, Forslund A-LL, Forsberg A, Francis MS (2003) Dissection of homologous translocon operons reveals a distinct role for YopD in type III secretion by Yersinia pseudotuberculosis. Microbiology 149:2615–2626

    Article  CAS  PubMed  Google Scholar 

  57. Hale TL, Oaks EV, Formal SB (1985) Identification and antigenic characterization of virulence-associated, plasmid-coded proteins of Shigella spp. and enteroinvasive Escherichia coli. Infect Immun 50:620–629

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dewoody RS, Merritt PM, Marketon MM (2013) Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol 3:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle L. Jessen Condry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Condry, D.L.J., Nilles, M.L. (2017). Introduction to Type III Secretion Systems. In: Nilles, M., Condry, D. (eds) Type 3 Secretion Systems. Methods in Molecular Biology, vol 1531. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6649-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6649-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6647-9

  • Online ISBN: 978-1-4939-6649-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics