Multifunctionalization of Gold Nanoshells

  • Sandra W. BishnoiEmail author
  • Yujen Lin
Part of the Methods in Molecular Biology book series (MIMB, volume 1530)


Gold silica nanoshells have found many applications within the field of molecular biology, including as nanoscale sensors, the detection of biomarkers, and in the treatment of solid tumors using photothermal ablation. In order for them to be targeted to specific biomarkers while also remaining stable in biological media, it is often necessary to modify their surfaces with more than one functional group. Here, we describe how to create multifunctional gold nanoshells that can be used to either target specific tumor types in vivo or for the detection of biomarkers using biological specimen.

Key words

Gold nanoshells Raman spectroscopy Polyethylene glycol Biomarker detection Cancer targeting Nitrocellulose membrane 


  1. 1.
    Bardhan R, Lal S, Joshi A et al (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44:936–946CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen W, Bardhan R, Bartels M et al (2010) A molecularly targeted theranostic probe for ovarian cancer. Mol Cancer Ther 9:1028–1038CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ayala-Orozco C, Urban C, Knight MW et al (2014) Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8:6372–6381CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    O’Neal DP, Hirsch LR, Halas NJ et al (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176CrossRefPubMedGoogle Scholar
  6. 6.
    Bishnoi SW, Lin YJ, Tibudan M et al (2011) SERS biodetection using gold-silica nanoshells and nitrocellulose membranes. Anal Chem 83:4053–4060CrossRefPubMedGoogle Scholar
  7. 7.
    Hirsch LR, Jackson JB, Lee A et al (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381CrossRefPubMedGoogle Scholar
  8. 8.
    Oldenburg S, Averitt R, Westcott S et al (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247CrossRefGoogle Scholar
  9. 9.
    Garcia MA (2012) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 45:389501CrossRefGoogle Scholar
  10. 10.
    Bishnoi SW, Rozell CJ, Levin CS et al (2006) All-optical nanoscale pH meter. Nano Lett 6:1687–1692CrossRefPubMedGoogle Scholar
  11. 11.
    Huschka R, Barhoumi A, Liu Q et al (2012) Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 6:7681–7691CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huschka R, Neumann O, Barhoumi A et al (2010) Visualizing light-triggered release of molecules inside living cells. Nano Lett 10:4117–4122CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stern JM, Cadeddu JA (2008) Emerging use of nanoparticles for the therapeutic ablation of urologic malignancies. Urol Oncol 26:93–96CrossRefPubMedGoogle Scholar
  14. 14.
    Chen C-L, Kuo L-R, Lee S-Y et al (2013) Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials 34:1128–1134CrossRefPubMedGoogle Scholar
  15. 15.
    Huang Y, Swarup VP, Bishnoi SW (2009) Rapid Raman imaging of stable, functionalized nanoshells in mammalian cell cultures. Nano Lett 9:2914–2920CrossRefPubMedGoogle Scholar
  16. 16.
    Swarup VP, Huang Y, Murillo G et al (2011) Modeling the cellular impact of nanoshell-based biosensors using mouse alveolar macrophage cultures. Metallomics 3:1218–1226CrossRefPubMedGoogle Scholar
  17. 17.
    Melancon MP, Zhou M, Zhang R et al (2014) Selective uptake and imaging of aptamer- and antibody-conjugated hollow nanospheres targeted to epidermal growth factor receptors overexpressed in head and neck cancer. ACS Nano 8(5):4530–4538CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Levin CS, Bishnoi SW, Grady NK et al (2006) Determining the conformation of thiolated poly(ethylene glycol) on Au nanoshells by surface-enhanced Raman scattering spectroscopic assay. Anal Chem 78:3277–3281CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Rice 360 Institute for Global HealthRice UniversityHoustonUSA
  2. 2.Institute of ChemistryAcademia SinicaNankangTaiwan, ROC

Personalised recommendations