Improved Targeting of Cancers with Nanotherapeutics

  • Christian Foster
  • Andre Watson
  • Joseph Kaplinsky
  • Nazila KamalyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1530)


Targeted cancer nanotherapeutics offers numerous opportunities for the selective uptake of toxic chemotherapies within tumors and cancer cells. The unique properties of nanoparticles, such as their small size, large surface-to-volume ratios, and the ability to achieve multivalency of targeting ligands on their surface, provide superior advantages for nanoparticle-based drug delivery to a variety of cancers. This review highlights various key concepts in the design of targeted nanotherapeutics for cancer therapy, and discusses physicochemical parameters affecting nanoparticle targeting, along with recent developments for cancer-targeted nanomedicines.

Key words

Targeting Antibodies Ligands EPR Cancer Oncology Nanoparticles Nanotherapeutics Nanomedicine Multivalency Drug delivery Translation 



Nazila Kamaly acknowledges support from the Technical University of Denmark (DTU), DTU Nanotech.


  1. 1.
    Ratain MJ (2015) Redefining the primary objective of phase I oncology trials. Nat Rev Clin Oncol 12(3):126PubMedCrossRefGoogle Scholar
  2. 2.
    Thanarajasingam G, Hubbard JM, Sloan JA, Grothey A (2015) The imperative for a new approach to toxicity analysis in oncology clinical trials. J Natl Cancer Inst 107(10):djv216PubMedCrossRefGoogle Scholar
  3. 3.
    Weiner GJ (2015) Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 15(6):361–370PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287PubMedCrossRefGoogle Scholar
  5. 5.
    Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–290PubMedCrossRefGoogle Scholar
  6. 6.
    Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25PubMedCrossRefGoogle Scholar
  7. 7.
    O’Brien ME et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449PubMedCrossRefGoogle Scholar
  8. 8.
    Hoy SM (2014) Albumin-bound paclitaxel: a review of its use for the first-line combination treatment of metastatic pancreatic cancer. Drugs 74(15):1757–1768PubMedCrossRefGoogle Scholar
  9. 9.
    McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78(3):585–594PubMedCrossRefGoogle Scholar
  10. 10.
    Leserman LD, Barbet J, Kourilsky F, Weinstein JN (1980) Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 288(5791):602–604PubMedCrossRefGoogle Scholar
  11. 11.
    Heath TD, Fraley RT, Papahdjopoulos D (1980) Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab′)2 to vesicle surface. Science 210(4469):539–541PubMedCrossRefGoogle Scholar
  12. 12.
    Allen TM, Chonn A (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223(1):42–46PubMedCrossRefGoogle Scholar
  13. 13.
    Torchilin VP (1994) Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agents. Immunomethods 4(3):244–258PubMedCrossRefGoogle Scholar
  14. 14.
    Sankhala KK et al (2009) A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J Clin Oncol 27(2535):15SGoogle Scholar
  15. 15.
    Matsumura Y et al (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15(3):517–525PubMedCrossRefGoogle Scholar
  16. 16.
    Nemunaitis J et al (2009) A phase I study of escalating doses of SGT-53 for intravenous infusion of patients with advanced solid tumors. Mol Ther 17:S226Google Scholar
  17. 17.
    Dawidczyk CM, Russell LM, Searson PC (2014) Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem 2:69PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257PubMedCrossRefGoogle Scholar
  19. 19.
    Danquah MK, Zhang XA, Mahato RI (2011) Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev 63(8):623–639PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392PubMedGoogle Scholar
  21. 21.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20PubMedCrossRefGoogle Scholar
  22. 22.
    Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802PubMedCrossRefGoogle Scholar
  23. 23.
    Gref R et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603PubMedCrossRefGoogle Scholar
  24. 24.
    Rabanel JM, Aoun V, Elkin I, Mokhtar M, Hildgen P (2012) Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem 19(19):3070–3102PubMedCrossRefGoogle Scholar
  25. 25.
    Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419PubMedCrossRefGoogle Scholar
  26. 26.
    Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63(3):170–183PubMedCrossRefGoogle Scholar
  27. 27.
    Saha RN, Vasanthakumar S, Bende G, Snehalatha M (2010) Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol 27(7):215–231PubMedCrossRefGoogle Scholar
  28. 28.
    Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53CrossRefGoogle Scholar
  29. 29.
    Chrastina A, Massey KA, Schnitzer JE (2011) Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):421–437PubMedCrossRefGoogle Scholar
  30. 30.
    Hobbs SK et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95(8):4607–4612PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46(1–3):149–168PubMedCrossRefGoogle Scholar
  32. 32.
    Martini M, Vecchione L, Siena S, Tejpar S, Bardelli A (2012) Targeted therapies: how personal should we go? Nat Rev Clin Oncol 9(2):87–97CrossRefGoogle Scholar
  33. 33.
    Taurin S, Nehoff H, Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164(3):265–275PubMedCrossRefGoogle Scholar
  34. 34.
    Prabhakar U et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8):2412–2417PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187PubMedCrossRefGoogle Scholar
  36. 36.
    Staropoli N et al (2014) Pegylated liposomal doxorubicin in the management of ovarian cancer: a systematic review and metaanalysis of randomized trials. Cancer Biol Ther 15(6):707–720PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Karathanasis E et al (2009) Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology 250(2):398–406PubMedCrossRefGoogle Scholar
  38. 38.
    Miller MA et al (2015) Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med 7(314):314ra183PubMedCrossRefGoogle Scholar
  39. 39.
    Hooks MA, Wade CS, Millikan WJ Jr (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11(1):26–37PubMedGoogle Scholar
  40. 40.
    Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760PubMedCrossRefGoogle Scholar
  41. 41.
    James JS, Dubs G (1997) FDA approves new kind of lymphoma treatment. Food and drug administration. AIDS Treat News 284:2–3Google Scholar
  42. 42.
    Albanell J, Baselga J (1999) Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today (Barc) 35(12):931–946Google Scholar
  43. 43.
    Toporkiewicz M, Meissner J, Matusewicz L, Czogalla A, Sikorski AF (2015) Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine 10:1399–1414PubMedPubMedCentralGoogle Scholar
  44. 44.
    Graham MM, Menda Y (2011) Radiopeptide imaging and therapy in the United States. J Nucl Med 52(Suppl 2):56S–63SPubMedCrossRefGoogle Scholar
  45. 45.
    Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162PubMedCrossRefGoogle Scholar
  46. 46.
    Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54(4):561–587PubMedCrossRefGoogle Scholar
  47. 47.
    Kue CS et al (2016) Small molecules for active targeting in cancer. Med Res Rev 36:494–575PubMedCrossRefGoogle Scholar
  48. 48.
    Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763PubMedCrossRefGoogle Scholar
  49. 49.
    Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59(8):748–758PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Shete HK, Prabhu RH, Patravale VB (2014) Endosomal escape: a bottleneck in intracellular delivery. J Nanosci Nanotechnol 14(1):460–474PubMedCrossRefGoogle Scholar
  51. 51.
    Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138PubMedCrossRefGoogle Scholar
  52. 52.
    Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG (2010) Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 267(1):9–21PubMedCrossRefGoogle Scholar
  53. 53.
    Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151(3):220–228PubMedCrossRefGoogle Scholar
  54. 54.
    Cheng X, Lee RJ (2016) The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 99((Pt A)):129–137PubMedCrossRefGoogle Scholar
  55. 55.
    Kauffman KJ, Webber MJ, Anderson DG (2015) Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release S0168-3659:30283Google Scholar
  56. 56.
    Kamaly N, Kalber T, Thanou M, Bell JD, Miller AD (2009) Folate receptor targeted bimodal liposomes for tumor magnetic resonance imaging. Bioconjug Chem 20(4):648–655PubMedCrossRefGoogle Scholar
  57. 57.
    Gallo J et al (2014) CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew Chem Int Ed Engl 53(36):9550–9554PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kirpotin DB et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66(13):6732–6740PubMedCrossRefGoogle Scholar
  59. 59.
    Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104(39):15549–15554PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26(10):552–558PubMedCrossRefGoogle Scholar
  61. 61.
    Teesalu T, Sugahara KN, Ruoslahti E (2013) Tumor-penetrating peptides. Front Oncol 3:216PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gregoriadis G, Neerunjun ED (1975) Homing of liposomes to target cells. Biochem Biophys Res Commun 65(2):537–544PubMedCrossRefGoogle Scholar
  63. 63.
    Hamaguchi T et al (2004) Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer Sci 95(7):608–613PubMedCrossRefGoogle Scholar
  64. 64.
    Mamot C et al (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 13(12):1234–1241PubMedCrossRefGoogle Scholar
  65. 65.
    Espelin CW, Leonard SC, Geretti E, Wickham TJ, Hendriks BS (2016) Dual HER2 targeting with trastuzumab and liposomal-encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res 76(6):1517–1527PubMedCrossRefGoogle Scholar
  66. 66.
    Geretti E et al (2015) Cyclophosphamide-mediated tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol Cancer Ther 14(9):2060–2071PubMedCrossRefGoogle Scholar
  67. 67.
    Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109):903–910PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
  69. 69.
    www.bindbio.comGoogle Scholar
  70. 70.
    Elsasser-Beile U, Buhler P, Wolf P (2009) Targeted therapies for prostate cancer against the prostate specific membrane antigen. Curr Drug Targets 10(2):118–125PubMedCrossRefGoogle Scholar
  71. 71.
    Slovin SF (2005) Targeting novel antigens for prostate cancer treatment: focus on prostate-specific membrane antigen. Expert Opin Ther Targets 9(3):561–570PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–483PubMedPubMedCentralGoogle Scholar
  73. 73.
    Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668PubMedCrossRefGoogle Scholar
  74. 74.
    Heidel JD et al (2007) Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin Cancer Res 13(7):2207–2215PubMedCrossRefGoogle Scholar
  75. 75.
    Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Adiseshaiah PP, Hall JB, McNeil SE (2010) Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1):99–112PubMedCrossRefGoogle Scholar
  77. 77.
    Bao G et al (2014) USNCTAM perspectives on mechanics in medicine. J R Soc Interface 11(97):20140301PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Li Y et al (2016) Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles. Interface Focus 6(1):20150086PubMedCrossRefGoogle Scholar
  79. 79.
    Wang J, Byrne JD, Napier ME, Desimone JM (2011) More effective nanomedicines through particle design. Small 7(14):1919–1931PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Vonarbourg A et al (2006) Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78(3):620–628PubMedCrossRefGoogle Scholar
  81. 81.
    Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318PubMedGoogle Scholar
  82. 82.
    Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9(2):E128–E147PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Padera TP et al (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695PubMedCrossRefGoogle Scholar
  85. 85.
    Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50(15):4478–4484PubMedGoogle Scholar
  86. 86.
    Wong C et al (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A 108(6):2426–2431PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gratton SE et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105(33):11613–11618PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150PubMedCrossRefGoogle Scholar
  89. 89.
    Schadlich A et al (2011) Tumor accumulation of NIR fluorescent PEG-PLA nanoparticles: impact of particle size and human xenograft tumor model. ACS Nano 5(11):8710–8720PubMedCrossRefGoogle Scholar
  90. 90.
    Cabral H et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823PubMedCrossRefGoogle Scholar
  91. 91.
    Geng Y et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Decuzzi P et al (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327PubMedCrossRefGoogle Scholar
  93. 93.
    Lee SY, Ferrari M, Decuzzi P (2009) Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20(49):495101PubMedCrossRefGoogle Scholar
  94. 94.
    Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668PubMedCrossRefGoogle Scholar
  95. 95.
    Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103(13):4930–4934PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30):5307–5314PubMedCrossRefGoogle Scholar
  97. 97.
    Peiris PM et al (2012) Imaging metastasis using an integrin-targeting chain-shaped nanoparticle. ACS Nano 6(10):8783–8795PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Toy R, Peiris PM, Ghaghada KB, Karathanasis E (2014) Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond) 9(1):121–134CrossRefGoogle Scholar
  99. 99.
    Gentile F, Curcio A, Indolfi C, Ferrari M, Decuzzi P (2008) The margination propensity of spherical particles for vascular targeting in the microcirculation. J Nanobiotechnology 6:9PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22(11):115101PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21PubMedCrossRefGoogle Scholar
  102. 102.
    Canelas DA, Herlihy KP, DeSimone JM (2009) Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4):391–404PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chu KS et al (2013) Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine 9(5):686–693PubMedGoogle Scholar
  104. 104.
    Zhao F, Zhao Y, Liu Y, Chang X, Chen C (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10):1322–1337PubMedCrossRefGoogle Scholar
  105. 105.
    Dausend J et al (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8(12):1135–1143PubMedCrossRefGoogle Scholar
  106. 106.
    Salvador-Morales C, Zhang L, Langer R, Farokhzad OC (2009) Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30(12):2231–2240PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666PubMedCrossRefGoogle Scholar
  108. 108.
    Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K (2001) Long-circulating poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles with modulated surface charge. J Control Release 77(1–2):27–38PubMedCrossRefGoogle Scholar
  109. 109.
    Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557PubMedCrossRefGoogle Scholar
  110. 110.
    Merkel TJ et al (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci U S A 108(2):586–591PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Best JP, Yan Y, Caruso F (2012) The role of particle geometry and mechanics in the biological domain. Adv Healthc Mater 1(1):35–47PubMedCrossRefGoogle Scholar
  112. 112.
    Anselmo AC, Mitragotri S (2016) Impact of particle elasticity on particle-based drug delivery systems. Adv Drug Deliv Rev
  113. 113.
    Zhang L et al (2012) Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 6(8):6681–6686PubMedCrossRefGoogle Scholar
  114. 114.
    Anselmo AC et al (2015) Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9(3):3169–3177PubMedCrossRefGoogle Scholar
  115. 115.
    Anderson NL et al (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3(4):311–326PubMedCrossRefGoogle Scholar
  116. 116.
    Vonarbourg A, Passirani C, Saulnier P, Benoit JP (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24):4356–4373PubMedCrossRefGoogle Scholar
  117. 117.
    Barenholz Y (2012) Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134PubMedCrossRefGoogle Scholar
  118. 118.
    Hamidi M, Azadi A, Rafiei P (2006) Pharmacokinetic consequences of pegylation. Drug Deliv 13(6):399–409PubMedCrossRefGoogle Scholar
  119. 119.
    Scherphof GL, Velinova M, Kamps J, Donga J, van der Want H, Kuipers F, Havekes L, Daemen T (1997) Modulation of pharmacokinetic behavior of liposomes. Adv Drug Deliv Rev 24(2-3):179-191Google Scholar
  120. 120.
    Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99(Pt A):28–51PubMedCrossRefGoogle Scholar
  121. 121.
    Spill F, Reynolds DS, Kamm RD, Zaman MH (2016) Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40:41–48PubMedCrossRefGoogle Scholar
  122. 122.
    Reisfeld RA (2013) The tumor microenvironment: a target for combination therapy of breast cancer. Crit Rev Oncog 18(1–2):115–133PubMedCrossRefGoogle Scholar
  123. 123.
    Wang LC et al (2014) Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res 2(2):154–166PubMedCrossRefGoogle Scholar
  124. 124.
    Linton SS, Sherwood SG, Drews KC, Kester M (2016) Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):208–222PubMedCrossRefGoogle Scholar
  125. 125.
    Milane L, Duan Z, Amiji M (2011) Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm 8(1):185–203PubMedCrossRefGoogle Scholar
  126. 126.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003PubMedCrossRefGoogle Scholar
  127. 127.
    Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116(4):2602–2663PubMedCrossRefGoogle Scholar
  128. 128.
    Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–167PubMedCrossRefGoogle Scholar
  129. 129.
    Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375PubMedCrossRefGoogle Scholar
  130. 130.
    Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5(4):496–504PubMedCrossRefGoogle Scholar
  131. 131.
    Kaufmann AM, Krise JP (2007) Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 96(4):729–746PubMedCrossRefGoogle Scholar
  132. 132.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347PubMedCrossRefGoogle Scholar
  133. 133.
    Weissig V (2003) Mitochondrial-targeted drug and DNA delivery. Crit Rev Ther Drug Carrier Syst 20(1):1–62PubMedCrossRefGoogle Scholar
  134. 134.
    Weissig V (2005) Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin Drug Deliv 2(1):89–102PubMedCrossRefGoogle Scholar
  135. 135.
    Weissig V, Boddapati SV, Jabr L, D’Souza GG (2007) Mitochondria-specific nanotechnology. Nanomedicine (Lond) 2(3):275–285CrossRefGoogle Scholar
  136. 136.
    Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119(14):2863–2869PubMedCrossRefGoogle Scholar
  137. 137.
    Ellis RJ, Minton AP (2003) Cell biology: join the crowd. Nature 425(6953):27–28PubMedCrossRefGoogle Scholar
  138. 138.
    Kim D, Lee ES, Oh KT, Gao ZG, Bae YH (2008) Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 4(11):2043–2050PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316PubMedCrossRefGoogle Scholar
  140. 140.
    Seibel P et al (1995) Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 23(1):10–17PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Weissig V, Torchilin VP (2001) Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 49(1–2):127–149PubMedCrossRefGoogle Scholar
  142. 142.
    Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51(1):10–14PubMedCrossRefGoogle Scholar
  143. 143.
    Murakami M et al (2011) Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 3(64):64ra2PubMedCrossRefGoogle Scholar
  144. 144.
    Park JW et al (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4):1172–1181PubMedGoogle Scholar
  145. 145.
    Winkler J, Martin-Killias P, Pluckthun A, Zangemeister-Wittke U (2009) EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Mol Cancer Ther 8(9):2674–2683PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Alexis F et al (2008) HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 3(12):1839–1843PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Karmali PP et al (2009) Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine 5(1):73–82PubMedGoogle Scholar
  148. 148.
    Park JH et al (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20(9):1630–1635PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Sugahara KN et al (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16(6):510–520PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Graf N et al (2012) Alpha(V)beta(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 6(5):4530–4539PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Kamaly N et al (2013) Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc Natl Acad Sci U S A 110(16):6506–6511PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Chan JM et al (2010) Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci U S A 107(5):2213–2218PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Park J et al (2012) Fibronectin extra domain B-specific aptide conjugated nanoparticles for targeted cancer imaging. J Control Release 163(2):111–118PubMedCrossRefGoogle Scholar
  154. 154.
    Cheng J et al (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5):869–876PubMedCrossRefGoogle Scholar
  155. 155.
    Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696PubMedCrossRefGoogle Scholar
  156. 156.
    Werner ME et al (2011) Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32(33):8548–8554PubMedCrossRefGoogle Scholar
  157. 157.
    Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A 109(40):16288–16293PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Hrkach J et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra139CrossRefGoogle Scholar
  159. 159.
    Wickham T, Futch K (2012) A phase I study of MM-302, a HER2-targeted liposomal doxorubicin, in patients with advanced, HER2- positive breast cancer. In: Thirty-Fifth Annual CTRC-AACR San Antonio Breast Cancer Symposium, Cancer Research, San Antonio, TX, pp Suppl 3 P5-18-09
  160. 160.
    Fernandes E et al (2015) New trends in guided nanotherapies for digestive cancers: a systematic review. J Control Release 209:288–307PubMedCrossRefGoogle Scholar
  161. 161.
    Senzer N et al (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096–1103PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Pirollo KF et al (2008) Tumor-targeting nanocomplex delivery of novel tumor suppressor RB94 chemosensitizes bladder carcinoma cells in vitro and in vivo. Clin Cancer Res 14(7):2190–2198PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Gaillard PJ et al (2014) Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One 9(1):e82331PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Davis ME et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Christian Foster
    • 1
  • Andre Watson
    • 1
  • Joseph Kaplinsky
    • 2
  • Nazila Kamaly
    • 2
    Email author
  1. 1.Ligandal Inc.BerkeleyUSA
  2. 2.Department of Micro and Nanotechnology, DTU NanotechTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations