Advertisement

Nanotechnology-Based Cancer Vaccine

  • Aws Alshamsan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1530)

Abstract

Nanotechnology offers invaluable tools to tailor cancer vaccines in order to generate robust antitumor immune response. Among the types of vehicles for cancer vaccines, nanoparticles (NPs) are easier to produce with better scalability. Several nanostructures have been discussed in literature as potential delivery systems for cancer antigens. Here, we focus on polymeric NPs fabricated from poly(d,l-lactic-co-glycolic) acid (PLGA). We describe how to prepare and characterize such NPs loaded with ovalbumin (OVA) antigen and immune adjuvant monophosphoryl lipid A (MPLA). We further describe methods to test the immune efficacy of such NPs in vitro and in vivo.

Key words

Cancer vaccine Nanoparticle (NPs) Poly(d,l-lactic-co-glycolic) acid (PLGA) Immunotherapy Dendritic cell (DC) 

Notes

Acknowledgment

This work was supported by King Abdullah Institute for Nanotechnology and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia.

References

  1. 1.
    Schuster M, Nechansky A, Kircheis R (2006) Cancer immunotherapy. Biotechnol J 1(2):138–147. doi: 10.1002/biot.200500044 CrossRefPubMedGoogle Scholar
  2. 2.
    Hamdy S, Alshamsan A, Samuel J (2009) Nanotechnology for cancer vaccine delivery, Nanotechnology in drug delivery. Springer, New York, pp 519–543Google Scholar
  3. 3.
    Bolhassani A, Safaiyan S, Rafati S (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10:3. doi: 10.1186/1476-4598-10-3 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fan Y, Moon JJ (2015) Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines 3(3):662–685. doi: 10.3390/vaccines3030662 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li W, Wei H, Li H, Gao J, Feng SS, Guo Y (2014) Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology. Nanomedicine 9(16):2587–2605. doi: 10.2217/nnm.14.127 CrossRefPubMedGoogle Scholar
  6. 6.
    Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63(10–11):943–955. doi: 10.1016/j.addr.2011.05.021 CrossRefPubMedGoogle Scholar
  7. 7.
    Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J (2007) “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother 30(4):378–395. doi: 10.1097/CJI.0b013e31802cf3e3 CrossRefPubMedGoogle Scholar
  8. 8.
    Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ (2009) Infection-mimicking materials to program dendritic cells in situ. Nat Mater 8(2):151–158. doi: 10.1038/nmat2357 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223(1):77–92CrossRefPubMedGoogle Scholar
  10. 10.
    Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J (2007) Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D, L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A 81(3):652–662. doi: 10.1002/jbm.a.31019 CrossRefPubMedGoogle Scholar
  11. 11.
    Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A (2008) Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26(39):5046–5057. doi: 10.1016/j.vaccine.2008.07.035 CrossRefPubMedGoogle Scholar
  12. 12.
    Weinstein Y, Ran S, Segal S (1984) Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J Immunol 132(2):656–661PubMedGoogle Scholar
  13. 13.
    Kishimoto S, Tsuyuguchi I, Yamamura Y (1969) Immune responses in aged mice. Clin Exp Immunol 5(5):525–530PubMedPubMedCentralGoogle Scholar
  14. 14.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63CrossRefPubMedGoogle Scholar
  15. 15.
    Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L (2004) Cell viability assays. In: Sittampalam GS, Coussens NP, Nelson H et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MDGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Nanomedicine Research Unit, Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  2. 2.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations