Fractal Analysis of Cancer Cell Surface

  • Igor SokolovEmail author
  • Maxim E. Dokukin
Part of the Methods in Molecular Biology book series (MIMB, volume 1530)


Fractal analysis of the cell surface is a rather sensitive method which has been recently introduced to characterize cell progression toward cancer. The surface of fixed and freeze-dried cells is imaged with atomic force microscopy (AFM) modality in ambient conditions. Here we describe the method to perform the fractal analysis specifically developed for the AFM images. Technical details, potential difficulties, points of special attention are described.

Key words

Fractal analysis Cancer progression Physics of cancer 



We gratefully acknowledge partial funding for this work by NSF CMMI-1435655. Veeco Award “HarmoniX Innovation” is thankfully acknowledged by I.S.


  1. 1.
    McCauley JL (1993) Chaos, dynamics, and fractals: an algorithmic approach to deterministic chaos, vol 2, Cambridge nonlinear science series. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Meakin P (1998) Fractals, scaling, and growth far from equilibrium, vol 5, Cambridge nonlinear science series. Cambridge University Press, Cambridge, UKGoogle Scholar
  3. 3.
    Wu KKS, Lahav O, Rees MJ (1999) The large-scale smoothness of the Universe. Nature 397(6716):225–230CrossRefGoogle Scholar
  4. 4.
    Burrough PA (1981) Fractal dimensions of landscapes and other environmental data. Nature 294(5838):240–242CrossRefGoogle Scholar
  5. 5.
    Morse DR, Lawton JH, Dodson MM, Williamson MH (1985) Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314(6013):731–733CrossRefGoogle Scholar
  6. 6.
    Chopard B, Herrmann HJ, Vicsek T (1991) Structure and growth mechanism of mineral dendrites. Nature 353(6343):409–412CrossRefGoogle Scholar
  7. 7.
    Lovejoy S (1982) Area-perimeter relation for rain and cloud areas. Science 216(4542):185–187. doi: 10.1126/science.216.4542.185, 216/4542/185 [pii]CrossRefPubMedGoogle Scholar
  8. 8.
    Jones-Smith K, Mathur H (2006) Fractal analysis: revisiting Pollock’s drip paintings. Nature 444(7119):E9–E10, discussion E10–11. doi: 10.1038/nature05398, nature05398 [pii]CrossRefPubMedGoogle Scholar
  9. 9.
    Losa GA (2005) Fractals in biology and medicine, vol 4, Mathematics and biosciences in interaction. Birkhäuser, BaselCrossRefGoogle Scholar
  10. 10.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. doi: 10.1126/science.1181369, 326/5950/289 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sedivy R, Mader RM (1997) Fractals, chaos, and cancer: do they coincide? Cancer Invest 15(6):601–607CrossRefPubMedGoogle Scholar
  12. 12.
    Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60(14):3683–3688PubMedGoogle Scholar
  13. 13.
    Pansera F (1994) Fractals and cancer. Med Hypotheses 42(6):400CrossRefPubMedGoogle Scholar
  14. 14.
    Less JR, Skalak TC, Sevick EM, Jain RK (1991) Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51(1):265–273PubMedGoogle Scholar
  15. 15.
    Mashiah A, Wolach O, Sandbank J, Uziel O, Raanani P, Lahav M (2008) Lymphoma and leukemia cells possess fractal dimensions that correlate with their biological features. Acta Haematol 119(3):142–150. doi: 10.1159/000125551, 000125551 [pii]CrossRefPubMedGoogle Scholar
  16. 16.
    Mango LJ, Valente PT (1998) Neural-network-assisted analysis and microscopic rescreening in presumed negative cervical cytologic smears. A comparison. Acta Cytol 42(1):227–232CrossRefPubMedGoogle Scholar
  17. 17.
    Meerding WJ, Doornewaard H, van Ballegooijen M, Bos A, van der Graaf Y, van den Tweel JG, van der Schouw YT, Habbema JD (2001) Cost analysis of PAPNET-assisted vs. conventional Pap smear evaluation in primary screening of cervical smears. Acta Cytol 45(1):28–35CrossRefPubMedGoogle Scholar
  18. 18.
    Pierard GE, Ezzine-Sebai N, Fazaa B, Nikkels-Tassoudji N, Pierard-Franchimont C (1995) Karyometry of malignant melanoma cells present in skin strippings. Skin Res Technol 1:177–179CrossRefPubMedGoogle Scholar
  19. 19.
    Doornewaard H, van der Schouw YT, van der Graaf Y, Bos AB, van den Tweel JG (1999) Observer variation in cytologic grading for cervical dysplasia of Papanicolaou smears with the PAPNET testing system. Cancer 87(4):178–183CrossRefPubMedGoogle Scholar
  20. 20.
    Dokukin ME, Guz NV, Gaikwad RM, Woodworth CD, Sokolov I (2011) Cell surface as a fractal: normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale. Phys Rev Lett 107(2):028101CrossRefPubMedGoogle Scholar
  21. 21.
    Guz NV, Dokukin ME, Woodworth CD, Cardin A, Sokolov I (2015) Towards early detection of cervical cancer: fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer. Nanomedicine 11(7):1667–1675. doi: 10.1016/j.nano.2015.04.012 PubMedGoogle Scholar
  22. 22.
    Dokukin ME, Guz NV, Woodworth CD, Sokolov I (2015) Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer. New J Phys 17:033019CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sokolov I (2015) Fractals: a possible new path to diagnose and cure cancer? Future Oncol 11(22):3049–3051. doi: 10.2217/fon.15.211 CrossRefPubMedGoogle Scholar
  24. 24.
    Falconer KJ (1990) Fractal geometry: mathematical foundations and applications. Wiley, ChichesterGoogle Scholar
  25. 25.
    Fisher TE, Marszalek PE, Fernandez JM (2000) Stretching single molecules into novel conformations using the atomic force microscope. Nat Struct Biol 7(9):719–724. doi: 10.1038/78936 CrossRefPubMedGoogle Scholar
  26. 26.
    Israelachvili JN (1985) Intermolecular and surface forces: with applications to colloidal and biological systems. Academic, LondonGoogle Scholar
  27. 27.
    Kant R (1996) Statistics of approximately self-affine fractals: random corrugated surface and time series. Phys Rev E 53(6):5749–5763CrossRefGoogle Scholar
  28. 28.
    Barabasi AL, Vicsek T (1991) Multifractality of self-affine fractals. Phys Rev A 44(4):2730–2733CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTufts UniversityMedfordUSA
  2. 2.Department of Biomedical EngineeringTufts UniversityMedfordUSA
  3. 3.Department of PhysicsTufts UniversityMedfordUSA

Personalised recommendations