Advertisement

Force Measurements for Cancer Cells

  • Vivek Rajasekharan
  • Varun K. A. Sreenivasan
  • Brenda Farrell
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1530)

Abstract

During cytoskeleton remodeling, cancer cells generate force at the plasma membrane that originates from chemical motors (e.g., actin). This force (pN) and its time course reflect the on and off-rates of the motors. We describe the design and calibration of a force-measuring device (i.e., optical tweezers) that is used to monitor this force and its time course at the edge of a cell, with particular emphasis on the temporal resolution of the instrument.

Key words

Cell mobility Membrane tube Membrane force Filopodium Actin Cytoskeleton Motor kinetics Optical tweezers Time constant Noise of signal 

Notes

Acknowledgements

Research supported by NIH grants S10 RR027549-01, R21CA152779, and RO1DC00354 and by the Alliance for Nanohealth 1W81XWH-10-2-0125. We thank Dr. W. E. Brownell who contributed to the design of the instrument, and Dr T. Yuan who also contributed to the design helped assemble and collected the data shown in Fig. 3. We thank Dr. J. N. Myers for providing the HN-31 cancer cell line, and are grateful for discussions with Dr. F. A. Pereira.

References

  1. 1.
    Monteiro J, Fodde R (2010) Cancer stemness and metastasis: therapeutic consequences and perspectives. Eur J Cancer 46(7):1198–1203. doi: 10.1016/j.ejca.2010.02.030, S0959-8049(10)00157-7 [pii]CrossRefPubMedGoogle Scholar
  2. 2.
    Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8):893–904. doi: 10.1038/ncb1616, ncb1616 [pii]CrossRefPubMedGoogle Scholar
  3. 3.
    Baugher PJ, Krishnamoorthy L, Price JE, Dharmawardhane SF (2005) Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells. Breast Cancer Res BCR 7:R965–74. doi:  10.1186/bcr1329
  4. 4.
    Vignjevic D, Schoumacher M, Gavert N, Janssen KP, Jih G, Lae M, Louvard D, Ben-Ze’ev A, Robine S (2007) Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 67(14):6844–6853. doi: 10.1158/0008-5472.CAN-07-0929 CrossRefPubMedGoogle Scholar
  5. 5.
    Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. doi: 10.1038/nprot.2007.30, nprot.2007.30 [pii]CrossRefPubMedGoogle Scholar
  7. 7.
    Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316. doi: 10.1016/S0006-3495(99)77386-8, S0006-3495(99)77386-8 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100(4):1484–1489. doi: 10.1073/pnas.0235407100, 0235407100 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572. doi: 10.1371/journal.pone.0032572, PONE-D-12-00385 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Indra I, Undyala V, Kandow C, Thirumurthi U, Dembo M, Beningo KA (2013) An in vitro correlation of mechanical forces and metastatic capacity. Phys Biol 8(1):015015. doi: 10.1088/1478-3975/8/1/015015, S1478-3975(11)69851-2 [pii]CrossRefGoogle Scholar
  11. 11.
    Tseng Q, Wang I, Duchemin-Pelletier E, Azioune A, Carpi N, Gao J, Filhol O, Piel M, Thery M, Balland M (2011) A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11(13):2231–2240. doi: 10.1039/c0lc00641f CrossRefPubMedGoogle Scholar
  12. 12.
    Amin L, Ercolini E, Shahapure R, Bisson G, Torre V (2011) The elementary events underlying force generation in neuronal lamellipodia. Sci Rep 1:153. doi: 10.1038/srep00153 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Amin L, Ercolini E, Shahapure R, Migliorini E, Torre V (2012) The role of membrane stiffness and actin turnover on the force exerted by DRG lamellipodia. Biophys J 102(11):2451–2460. doi: 10.1016/j.bpj.2012.04.036, S0006-3495(12)00510-3 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cojoc D, Difato F, Ferrari E, Shahapure RB, Laishram J, Righi M, Di Fabrizio EM, Torre V (2007) Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS One 2(10):e1072. doi: 10.1371/journal.pone.0001072 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sayyad WA, Amin L, Fabris P, Ercolini E, Torre V (2015) The role of myosin-II in force generation of DRG filopodia and lamellipodia. Sci Rep 5:7842. doi: 10.1038/srep07842, srep07842 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Farrell B, Qian F, Kolomeisky A, Anvari B, Brownell WE (2013) Measuring forces at the leading edge: a force assay for cell motility. Integr Biol (Camb) 5(1):204–214. doi: 10.1039/c2ib20097j CrossRefGoogle Scholar
  17. 17.
    Bornschlogl T, Romero S, Vestergaard CL, Joanny JF, Van Nhieu GT, Bassereau P (2013) Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip. Proc Natl Acad Sci U S A 110(47):18928–18933. doi: 10.1073/pnas.1316572110, 1316572110 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Manoussaki D, Shin WD, Waterman CM, Chadwick RS (2015) Cytosolic pressure provides a propulsive force comparable to actin polymerization during lamellipod protrusion. Sci Rep 5:12314. doi: 10.1038/srep12314, srep12314 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Datar A, Bornschlogl T, Bassereau P, Prost J, Pullarkat PA (2015) Dynamics of membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in axons. Biophys J 108(3):489–497. doi: 10.1016/j.bpj.2014.11.3480, S0006-3495(14)04744-4 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pontes B, Viana NB, Salgado LT, Farina M, Moura Neto V, Nussenzveig HM (2011) Cell cytoskeleton and tether extraction. Biophys J 101(1):43–52. doi: 10.1016/j.bpj.2011.05.044, S0006-3495(11)00614-X [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pontes B, Ayala Y, Fonseca AC, Romao LF, Amaral RF, Salgado LT, Lima FR, Farina M, Viana NB, Moura-Neto V, Nussenzveig HM (2013) Membrane elastic properties and cell function. PLoS One 8(7):e67708. doi: 10.1371/journal.pone.0067708, PONE-D-13-05775 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hochmuth RM, Mohandas N, Blackshear PL Jr (1973) Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J 13(8):747–762. doi: 10.1016/S0006-3495(73)86021-7, S0006-3495(73)86021-7 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68(3):988–996. doi: 10.1016/S0006-3495(95)80274-2, S0006-3495(95)80274-2 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shao JY, Hochmuth RM (1996) Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Biophys J 71(5):2892–2901. doi: 10.1016/S0006-3495(96)79486-9, S0006-3495(96)79486-9 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Qian F, Ermilov S, Murdock D, Brownell WE, Anvari B (2004) Combining optical tweezers and patch clamp for studies of cell membrane electromechanics. Rev Sci Instrum 75(9):2937–2942. doi: 10.1063/1.1781382 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J 55(3):509–517. doi: 10.1016/S0006-3495(89)82844-9, S0006-3495(89)82844-9 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Evans E, Heinrich V, Leung A, Kinoshita K (2005) Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton. Biophys J 88(3):2288–2298. doi: 10.1529/biophysj.104.051698, S0006-3495(05)73288-4 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Heinrich V, Leung A, Evans E (2005) Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. II. Tether flow terminated by P-selectin dissociation from PSGL-1. Biophys J 88(3):2299–2308. doi: 10.1529/biophysj.104.051706, S0006-3495(05)73289-6 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dickinson RB (2009) Models for actin polymerization motors. J Math Biol 58(1–2):81–103. doi: 10.1007/s00285-008-0200-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61(2):569–582. doi: 10.1016/S0006-3495(92)81860-X, S0006-3495(92)81860-X [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34(6):910–914CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lemons DS (1997) Paul Langevin’s 1908 paper “On the theory of brownian motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]. American Journal of Physics 65 (11):1079. doi: 10.1119/1.18725
  33. 33.
    Klafter J, Lim SC, Metzler R (2012) Fractional dynamics : recent advances. World Scientific, Singapore; Hackensack, NJGoogle Scholar
  34. 34.
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809. doi: 10.1063/1.1785844 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Warner AW (1972) Acousto-optic light deflectors using optical activity in paratellurite. J Appl Phys 43(11):4489. doi: 10.1063/1.1660950 CrossRefGoogle Scholar
  36. 36.
    Chang IC, Hecht DL (1975) Doubling acousto-optic deflector resolution utilizing second-order birefringent diffraction. Appl Phys Lett 27(10):517–517. doi: 10.1063/1.88290 CrossRefGoogle Scholar
  37. 37.
    Simmons RM, Finer JT, Chu S, Ja S (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70(4):1813–1822. doi: 10.1016/s0006-3495(96)79746-1 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ozbek H, Fair JA, Phillips SL (1977) Viscosity of aqueous sodium chloride solutions from 0 to 150 °C. (No. LBL-5931). Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)Google Scholar
  39. 39.
    Le Gall A, Perronet K, Dulin D, Villing A, Bouyer P, Visscher K, Westbrook N (2010) Simultaneous calibration of optical tweezers spring constant and position detector response. Opt Express 18(25):26469–26474, doi: 208584 [pii]CrossRefPubMedGoogle Scholar
  40. 40.
    Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instruments 75(3):594. doi: 10.1063/1.1645654 CrossRefGoogle Scholar
  41. 41.
    Sarshar M, Wong WT, Anvari B (2014) Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. J Biomed Opt 19(11):115001. doi: 10.1117/1.JBO.19.11.115001, 1934601 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N (2004) Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303(5666):2007–2010. doi: 10.1126/science.1093923, 303/5666/2007 [pii]CrossRefPubMedGoogle Scholar
  43. 43.
    Caplow M (1994) The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J Cell Biol 127(3):779–788. doi: 10.1083/jcb.127.3.779 CrossRefPubMedGoogle Scholar
  44. 44.
    Cross RA (2004) The kinetic mechanism of kinesin. Trends Biochem Sci 29(6):301–309. doi: 10.1016/j.tibs.2004.04.010, S0968-0004(04)00103-3 [pii]CrossRefPubMedGoogle Scholar
  45. 45.
    Greenberg MJ, Ostap EM (2013) Regulation and control of myosin-I by the motor and light chain binding domains. Trends Cell Biol 23(2):81–89. doi: 10.1016/j.tcb.2012.10.008 CrossRefPubMedGoogle Scholar
  46. 46.
    Rief M, Rock RS, Mehta AD, Mooseker MS, Cheney RE, Spudich JA (2000) Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci U S A 97(17):9482–9486, doi: 97/17/9482 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Liang H, Vu KT, Krishnan P, Trang TC, Shin D, Kimel S, Berns MW (1996) Wavelength dependence of cell cloning efficiency after optical trapping. Biophys J 70(3):1529–1533. doi: 10.1016/S0006-3495(96)79716-3, S0006-3495(96)79716-3 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Leitz G, Fallman E, Tuck S, Axner O (2002) Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. Biophys J 82(4):2224–2231. doi: 10.1016/S0006-3495(02)75568-9, S0006-3495(02)75568-9 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li DD, Ameer-Beg S, Arlt J, Tyndall D, Walker R, Matthews DR, Visitkul V, Richardson J, Henderson RK (2012) Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays. Sensors (Basel) 12(5):5650–5669. doi: 10.3390/s120505650 CrossRefGoogle Scholar
  50. 50.
    Donoho DL (1995) De-noising by soft-thresholding. IEEE Transactions on Information Theory 41(3):613–627CrossRefGoogle Scholar
  51. 51.
    Huang N, Shen Z, Long, SR, Wu M, Shih H, Zheng Q, Yen N, Tung C, Liu H (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454 (1971):995, 903–995, 903. doi: 10.1098/rspa.1998.0193

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Vivek Rajasekharan
    • 1
    • 2
  • Varun K. A. Sreenivasan
    • 1
    • 3
  • Brenda Farrell
    • 1
  1. 1.Bobby R. Alford Department of Otolaryngology – Head & Neck SurgeryBaylor College of MedicineHoustonUSA
  2. 2.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  3. 3.Department of Physics and AstronomyMacquarie UniversitySydneyAustralia

Personalised recommendations