Skip to main content

High-Resolution Genome-Wide Mapping of Nucleosome Positioning and Occupancy Level Using Paired-End Sequencing Technology

  • Protocol
  • First Online:
Book cover Histones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1528))

Abstract

Because of its profound influence on DNA accessibility for protein binding and thus on the regulation of diverse biological processes, nucleosome positioning has been studied for many years. In the past decade, high-throughput sequencing technologies have opened new perspectives in this research field by allowing the study of nucleosome positioning and occupancy on a genome-wide scale, therefore providing understanding on important aspects of chromatin packaging, as well as on various chromatin-template processes like transcription. In this chapter, we provide the protocol of MNase sequencing for the genome-wide mapping of nucleosomes using MNase to generate mononucleosomal DNA fragments and next-generation sequencing technology to identify their individual location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes AL, Rando OJ (2014) Mechanisms underlying nucleosome positioning in vivo. Annu Rev Biophys 43:41–63

    Article  CAS  PubMed  Google Scholar 

  2. Kundaje A, Kyriazopoulou-Panagiotopoulou S, Libbrecht M, Smith CL, Raha D, Winters EE et al (2012) Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Res 22:1735–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A (2011) Determinants of nucleosome organization in primary human cells. Nature 474:516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y et al (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366

    Article  CAS  PubMed  Google Scholar 

  5. Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS, Struhl K et al (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17:1170–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK et al (2006) A genomic code for nucleosome positioning. Nature 442:772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tillo D, Hughes TR (2009) G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 10:442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Field Y et al (2010) High nucleosome occupancy is encoded at human regulatory sequences. PLoS One 5, e9129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Telford DJ, Stewart BW (1989) Micrococcal nuclease: its specificity and use for chromatin analysis. Int J Biochem 21:127–137

    Article  CAS  PubMed  Google Scholar 

  10. Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 20:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21:1519–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K et al (2009) H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat Genet 41:941–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodrigue S, Materna AC, Timberlake SC, Blackburn MC, Malmstrom RR, Alm EJ et al (2010) Unlocking short read sequencing for metagenomics. PLoS One 5, e11840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henikoff JG, Belsky JA, Krassovsky K, MacAlpine DM, Henikoff S (2011) Epigenome characterization at single base-pair resolution. Proc Natl Acad Sci U S A 108:18318–18323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19:Unit 19.10.1–19.10.21

    Google Scholar 

  17. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goecks J, Nekrutenko A, Taylor J, Galaxy T (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J et al (2013) DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res 23:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffman MM, Ernst J, Wilder SP, Kundaje A, Harris RS, Libbrecht M et al (2013) Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res 41:827–841

    Article  CAS  PubMed  Google Scholar 

  27. Coulombe C, Poitras C, Nordell-Markovits A, Brunelle M, Lavoie MA, Robert F et al (2014) VAP: a versatile aggregate profiler for efficient genome-wide data representation and discovery. Nucleic Acids Res 42(Web Server issue):W485–W493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Shin H, Song JS, Lei Y, Liu XS (2008) Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics 9:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Gévry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brunelle, M., Rodrigue, S., Jacques, PÉ., Gévry, N. (2017). High-Resolution Genome-Wide Mapping of Nucleosome Positioning and Occupancy Level Using Paired-End Sequencing Technology. In: Guillemette, B., Gaudreau, L. (eds) Histones. Methods in Molecular Biology, vol 1528. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6630-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6630-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6628-8

  • Online ISBN: 978-1-4939-6630-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics