Skip to main content

Isolation and Differentiation of Murine Macrophages

  • Protocol
  • First Online:
Hypertension

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1527))

Abstract

Macrophages play a major role in inflammation, wound healing, and tissue repair. Infiltrated monocytes differentiate into different macrophage subtypes with protective or pathogenic activities in vascular lesions. In the heart and vascular tissues, pathological activation promotes cardiovascular inflammation and remodeling and there is increasing evidence that macrophages play important mechanisms in this environment. Primary murine macrophages can be obtained from: bone marrow by different treatments (granulocyte-macrophage colony-stimulating factor—GM-CSF, macrophage colony-stimulating factor—M-CSF or supernatant of murine fibroblast L929), peritoneal cavity (resident or thioglycolate elicit macrophages), from the lung (alveolar macrophages) or from adipose tissue. In this chapter we describe some protocols to obtain primary murine macrophages and how to identify a pure macrophage population or activation phenotypes using different markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604

    Article  CAS  PubMed  Google Scholar 

  2. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scholtes VP, Johnson JL, Jenkins N, Sala-Newby GB, de Vries JP, de Borst GJ et al (2012) Carotid atherosclerotic plaque matrix metalloproteinase-12-positive macrophage subpopulation predicts adverse outcome after endarterectomy. J Am Heart Assoc 1(6):e001040

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ (2009) Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54(3):537–543

    Article  CAS  PubMed  Google Scholar 

  5. Lai L, Alaverdi N, Maltais L, Morse HC III (1998) Mouse cell surface antigens: nomenclature and immunophenotyping. J Immunol 160(8):3861–3868

    CAS  PubMed  Google Scholar 

  6. Tomida M, Yamamoto-Yamaguchi Y, Hozumi M (1984) Purification of a factor inducing differentiation ofmouse myeloid leukemic M1 cells from conditioned medium of mouse fibroblast L929 cells. J Biol Chem 259(17):10978–82

    Google Scholar 

  7. Cunnick J, Kaur P, Cho Y, Groffen J, Heisterkamp N (2006) Use of bone marrow-derived macrophages to model murine innate immune responses. J Immunol Methods 311(1–2):96–105

    Article  CAS  PubMed  Google Scholar 

  8. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh GG (2002) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leuk Biol 71(4):597–602

    CAS  Google Scholar 

  9. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    Article  CAS  PubMed  Google Scholar 

  10. Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE (2002) IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  11. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H et al (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180(4):2650–2658

    Article  CAS  PubMed  Google Scholar 

  12. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4):344–346

    Article  CAS  PubMed  Google Scholar 

  13. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  14. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Rios Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rios, F.J., Touyz, R.M., Montezano, A.C. (2017). Isolation and Differentiation of Murine Macrophages. In: Touyz, R., Schiffrin, E. (eds) Hypertension. Methods in Molecular Biology, vol 1527. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6625-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6625-7_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6623-3

  • Online ISBN: 978-1-4939-6625-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics