Skip to main content
Book cover

Hypertension pp 189–200Cite as

Measuring T-Type Calcium Channel Currents in Isolated Vascular Smooth Muscle Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1527))

Abstract

Patch clamp electrophysiology is a powerful tool that has been important in isolating and characterizing the ion channels that govern cellular excitability under physiological and pathophysiological conditions. The ability to enzymatically dissociate blood vessels and acutely isolate vascular smooth muscle cells has enabled the application of patch clamp electrophysiology to the identification of diverse voltage dependent ion channels that ultimately control vasoconstriction and vasodilation. Since intraluminal pressure results in depolarization of vascular smooth muscle, the channels that control the voltage dependent influx of extracellular calcium are of particular interest. This chapter describes methods for isolating smooth muscle cells from resistance vessels, and for recording, isolating, and characterizing voltage dependent calcium channel currents, using patch clamp electrophysiological and pharmacological protocols.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    CAS  PubMed  Google Scholar 

  2. Schubert R, Mulvany MJ (1999) The myogenic response: established facts and attractive hypotheses. Clin Sci (Lond) 96:313–326

    Article  CAS  Google Scholar 

  3. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    Article  CAS  PubMed  Google Scholar 

  4. Knot HJ, Nelson MT (1998) Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 508:199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pesic A et al (2004) High blood pressure upregulates arterial L-type Ca2+ channels: is membrane depolarization the signal? Circ Res 94:e97–e104

    Article  CAS  PubMed  Google Scholar 

  6. Loutzenhiser R et al (1997) Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II. Am J Physiol 273:F307–F314

    CAS  PubMed  Google Scholar 

  7. Welsh DG, Segal SS (1998) Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am J Physiol 274:H178–H186

    CAS  PubMed  Google Scholar 

  8. Siegl D et al (2005) Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ Res 97:781–788

    Article  CAS  PubMed  Google Scholar 

  9. Kotecha N, Hill MA (2005) Myogenic contraction in rat skeletal muscle arterioles: smooth muscle membrane potential and Ca(2+) signaling. Am J Physiol Heart Circ Physiol 289:H1326–H1334

    Article  CAS  PubMed  Google Scholar 

  10. Wolfle SE et al (2011) Non-linear relationship between hyperpolarisation and relaxation enables long distance propagation of vasodilatation. J Physiol 589:2607–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liao P et al (2007) A smooth muscle CaV1.2 calcium channel splice variant underlies hyperpolarized window current and enhanced state-dependent inhibition by nifedipine. J Biol Chem 282:35133–35142

    Article  CAS  PubMed  Google Scholar 

  12. Cheng X et al (2009) Alternative splicing of Cav1.2 channel exons in smooth muscle cells of resistance-size arteries generates currents with unique electrophysiological properties. Am J Physiol Heart Circ Physiol 297:H680–H688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuo IY et al (2011) T-type calcium channels and vascular function: the new kid on the block? J Physiol 589(Pt 4):783–795

    Article  CAS  PubMed  Google Scholar 

  14. Hamill OP et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  15. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  16. Sakmann B, Neher E (eds) (2009) Single-channel recording, 2nd edn. Springer Science + Business Media, LLC, New York

    Google Scholar 

  17. Kuo IY et al (2010) Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries. J Cereb Blood Flow Metab 30:1226–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berra-Romani R et al (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol 295:C779–C790

    Article  CAS  Google Scholar 

  19. Droogmans G et al (1987) Effect of adrenergic agonists on Ca2+-channel currents in single vascular smooth muscle cells. Pflugers Arch 409:7–12

    Article  CAS  PubMed  Google Scholar 

  20. Wang R et al (1989) Two types of calcium channels in isolated smooth muscle cells from rat tail artery. Am J Physiol 256:H1361–H1368

    CAS  PubMed  Google Scholar 

  21. Simard JM (1991) Calcium channel currents in isolated smooth muscle cells from the basilar artery of the guinea pig. Pflugers Arch 417:528–536

    Article  CAS  PubMed  Google Scholar 

  22. Worley JF et al (1991) Regulation of single calcium channels in cerebral arteries by voltage, serotonin, and dihydropyridines. Am J Physiol 261:H1951–H1960

    CAS  PubMed  Google Scholar 

  23. Langton PD (1993) Calcium channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol 471:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Langton PD, Standen NB (1993) Calcium currents elicited by voltage steps and steady voltages in myocytes isolated from the rat basilar artery. J Physiol 469:535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quayle JM et al (1993) Single calcium channels in resistance-sized cerebral arteries from rats. Am J Physiol 264:H470–H478

    CAS  PubMed  Google Scholar 

  26. Ohya Y et al (1993) Voltage-dependent Ca2+ channels in resistance arteries from spontaneously hypertensive rats. Circ Res 73:1090–1099

    Article  CAS  PubMed  Google Scholar 

  27. McHugh D, Beech DJ (1996) Modulation of Ca2+ channel activity by ATP metabolism and internal Mg2+ in guinea-pig basilar artery smooth muscle cells. J Physiol 492(Pt 2):359–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yokoshiki H et al (1997) Regulation of Ca2+ channel currents by intracellular ATP in smooth muscle cells of rat mesenteric artery. Am J Physiol 272:H814–H819

    CAS  PubMed  Google Scholar 

  29. Petkov GV et al (2001) Characterization of voltage-gated calcium currents in freshly isolated smooth muscle cells from rat tail main artery. Acta Physiol Scand 173:257–265

    Article  CAS  PubMed  Google Scholar 

  30. Matchkov VV et al (2004) A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries. J Gen Physiol 123:121–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikitina E et al (2007) Voltage-dependent calcium channels of dog basilar artery. J Physiol 580:523–541

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J et al (2007) Role of Cav1.2 L-type Ca2+ channels in vascular tone: effects of nifedipine and Mg2+. Am J Physiol Heart Circ Physiol 292:H415–H425

    Article  CAS  PubMed  Google Scholar 

  33. Criddle DN et al (1994) Levcromakalim-induced modulation of membrane potassium currents, intracellular calcium and mechanical activity in rat mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol 349:422–430

    Article  CAS  PubMed  Google Scholar 

  34. Jackson WF et al (1997) Enzymatic isolation and characterization of single vascular smooth muscle cells from cremasteric arterioles. Microcirculation 4:35–50

    Article  CAS  PubMed  Google Scholar 

  35. Park JK et al (2007) Regulation of membrane excitability by intracellular pH (pHi) changers through Ca2 + -activated K+ current (BK channel) in single smooth muscle cells from rabbit basilar artery. Pflugers Arch 454:307–319

    Article  CAS  PubMed  Google Scholar 

  36. Wu BN et al (2007) Hyposmotic challenge inhibits inward rectifying K+ channels in cerebral arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 292:H1085–H1094

    Article  CAS  PubMed  Google Scholar 

  37. Morita H et al (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103:417–426

    Article  CAS  PubMed  Google Scholar 

  38. Welsh DG et al (2000) Swelling-activated cation channels mediate depolarization of rat cerebrovascular smooth muscle by hyposmolarity and intravascular pressure. J Physiol 527(Pt 1):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Y. Kuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kuo, I.Y., Hill, C.E. (2017). Measuring T-Type Calcium Channel Currents in Isolated Vascular Smooth Muscle Cells. In: Touyz, R., Schiffrin, E. (eds) Hypertension. Methods in Molecular Biology, vol 1527. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6625-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6625-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6623-3

  • Online ISBN: 978-1-4939-6625-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics