Skip to main content

Studying Antibody Repertoires with Next-Generation Sequencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1526))

Abstract

Next-generation sequencing is making it possible to study the antibody repertoire of an organism in unprecedented detail, and, by so doing, to characterize its behavior in the response to infection and in pathological conditions such as autoimmunity and cancer. The polymorphic nature of the repertoire poses unique challenges that rule out the use of many commonly used NGS methods and require tradeoffs to be made when considering experimental design.

We outline the main contexts in which antibody repertoire analysis has been used, and summarize the key tools that are available. The humoral immune response to vaccination has been a particular focus of repertoire analyses, and we review the key conclusions and methods used in these studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sallusto F, Lanzavecchia A, Araki K, Ahmed R (2010) From vaccines to memory and back. Immunity 33:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lollini P-L, Nicoletti G, Landuzzi L et al (2011) Vaccines and other immunological approaches for cancer immunoprevention. Curr Drug Targets 12:1957–1973

    Article  CAS  PubMed  Google Scholar 

  3. Lefranc M-P, Lefranc G (2001) The immunoglobulin FactsBook, 1st edn. Academic, San Diego

    Google Scholar 

  4. Cheung WC, Beausoleil SA, Zhang X et al (2012) A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat Biotechnol 30:447–452

    Article  CAS  PubMed  Google Scholar 

  5. Murphy KM (2012) Janeway’s immunobiology, 8th edn. Garland Science, UK

    Google Scholar 

  6. Collis AVJ, Brouwer AP, Martin ACR (2003) Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J Mol Biol 325:337–354

    Article  CAS  PubMed  Google Scholar 

  7. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schatz DG (2004) V(D)J recombination. Immunol Rev 200:5–11

    Article  CAS  PubMed  Google Scholar 

  9. Schatz DG, Ji Y (2011) Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 11:251–263

    Article  CAS  PubMed  Google Scholar 

  10. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381:751–758

    Article  CAS  PubMed  Google Scholar 

  11. Poulsen TR, Jensen A, Haurum JS, Andersen PS (2011) Limits for antibody affinity maturation and repertoire diversification in hypervaccinated humans. J Immunol 187:4229–4235

    Article  CAS  PubMed  Google Scholar 

  12. Stavnezer J, Guikema JEJ, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Radbruch A, Muehlinghaus G, Luger EO et al (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6:741–750

    Article  CAS  PubMed  Google Scholar 

  14. Schittek B, Rajewsky K (1990) Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346:749–751

    Article  CAS  PubMed  Google Scholar 

  15. Glanville J, Zhai W, Berka J et al (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 106:20216–20221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trepel F (1974) Number and distribution of lymphocytes in man. A critical analysis. Klin Wochenschr 52:511–15

    Google Scholar 

  17. Fischer N (2011) Sequencing antibody repertoires. MAbs 3:17–20

    Article  PubMed  PubMed Central  Google Scholar 

  18. Georgiou G, Ippolito GC, Beausang J et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bashford-Rogers R, Palser AL, Idris SF et al (2014) Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunol 15:29

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vollmers C, Sit RV, Weinstein JA et al (2013) Genetic measurement of memory B-cell recall using antibody repertoire sequencing. Proc Natl Acad Sci U S A 110:13463–13468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmitt MW, Kennedy SR, Salk JJ et al (2012) Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A 109:14508–14513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shugay M, Britanova OV, Merzlyak EM et al (2014) Towards error-free profiling of immune repertoires. Nat Methods 11:653–655

    Article  CAS  PubMed  Google Scholar 

  23. Vander Heiden JA, Yaari G, Uduman M et al (2014) pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30:1930–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Safonova Y, Bonissone S, Kurpilyansky E et al (2015) IgRepertoireConstructor: a novel algorithm for antibody repertoire construction and immunoproteogenomics analysis. Bioinformatics 31:i53–i61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meijer P-J, Andersen PS, Haahr Hansen M et al (2006) Isolation of human antibody repertoires with preservation of the natural heavy and light chain pairing. J Mol Biol 358:764–772

    Article  CAS  PubMed  Google Scholar 

  26. DeKosky BJ, Ippolito GC, Deschner RP et al (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol 31:166–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turchaninova MA, Britanova OV, Bolotin DA et al (2013) Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol 43:2507–2515

    Article  CAS  PubMed  Google Scholar 

  28. Laserson U, Vigneault F, Gadala-Maria D et al (2014) High-resolution antibody dynamics of vaccine-induced immune responses. Proc Natl Acad Sci U S A 111:4928–4933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lefranc M-P, Pommié C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77

    Article  CAS  PubMed  Google Scholar 

  30. Knight KL (1992) Restricted VH gene usage and generation of antibody diversity in rabbit. Annu Rev Immunol 10:593–616

    Article  CAS  PubMed  Google Scholar 

  31. Darlow JM, Stott DI (2006) Gene conversion in human rearranged immunoglobulin genes. Immunogenetics 58:511–522

    Article  CAS  PubMed  Google Scholar 

  32. Duvvuri B, Wu GE (2012) Gene conversion-like events in the diversification of human rearranged IGHV3-23*01 gene sequences. Front Immunol 3:158

    Article  PubMed  PubMed Central  Google Scholar 

  33. Larimore K, McCormick MW, Robins HS, Greenberg PD (2012) Shaping of human germline IgH repertoires revealed by deep sequencing. J Immunol 189:3221–3230

    Article  CAS  PubMed  Google Scholar 

  34. Yousfi Monod M, Giudicelli V, Chaume D, Lefranc M-P (2004) IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONs. Bioinformatics 20(Suppl 1):i379–i385

    Article  PubMed  Google Scholar 

  35. Jiang N, Weinstein JA, Penland L et al (2011) Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc Natl Acad Sci U S A 108:5348–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Warren RL, Freeman JD, Zeng T et al (2011) Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res 21:790–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Angelo SD, Glanville J, Ferrara F et al (2014) The antibody mining toolbox, an open source tool for the rapid analysis of antibody repertoires. MAbs 6:160–172

    Article  PubMed  Google Scholar 

  38. Alamyar E, Duroux P, Lefranc M-P, Giudicelli V (2012) IMGT(®) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol Biol 882:569–604

    Article  CAS  PubMed  Google Scholar 

  39. Ye J, Ma N, Madden TL, Ostell JM (2013) IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41:W34–W40

    Article  PubMed  PubMed Central  Google Scholar 

  40. Frost SDW, Murrell B, Hossain ASMM et al (2015) Assigning and visualizing germline genes in antibody repertoires. Philos Trans R Soc Lond B Biol Sci 370:20140240

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  Google Scholar 

  42. Gaëta BA, Malming HR, Jackson KJL et al (2007) iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences. Bioinformatics 23:1580–1587

    Article  PubMed  Google Scholar 

  43. Wang X, Wu D, Zheng S et al (2008) Ab-origin: an enhanced tool to identify the sourcing gene segments in germline for rearranged antibodies. BMC Bioinformatics 9(Suppl 12):S20

    Article  PubMed  PubMed Central  Google Scholar 

  44. Souto-Carneiro MM, Longo NS, Russ DE et al (2004) Characterization of the human Ig heavy chain antigen binding complementarity determining region 3 using a newly developed software algorithm, JOINSOLVER. J Immunol 172:6790–6802

    Article  CAS  PubMed  Google Scholar 

  45. Munshaw S, Kepler TB (2010) SoDA2: a Hidden Markov Model approach for identification of immunoglobulin rearrangements. Bioinformatics 26:867–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohm-Laursen L, Nielsen M, Larsen SR, Barington T (2006) No evidence for the use of DIR, D-D fusions, chromosome 15 open reading frames or VH replacement in the peripheral repertoire was found on application of an improved algorithm, JointML, to 6329 human immunoglobulin H rearrangements. Immunology 119:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giraud M, Salson M, Duez M et al (2014) Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing. BMC Genomics 15:409

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kepler TB (2013) Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors. F1000Res 2:103

    PubMed  PubMed Central  Google Scholar 

  49. Thomas N, Heather J, Ndifon W et al (2013) Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29:542–550

    Article  CAS  PubMed  Google Scholar 

  50. Bolotin DA, Shugay M, Mamedov IZ et al (2013) MiTCR: software for T-cell receptor sequencing data analysis. Nat Methods 10:813–814

    Article  CAS  PubMed  Google Scholar 

  51. Hershberg U, Prak ETL (2015) The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philos Trans R Soc B 370:20140239

    Article  Google Scholar 

  52. Wine Y, Boutz DR, Lavinder JJ et al (2013) Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc Natl Acad Sci U S A 110:2993–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu Y-C, Kipling D, Dunn-Walters DK (2012) Age-related changes in human peripheral blood IGH repertoire following vaccination. Front Immunol 3:193

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rogosch T, Kerzel S, Hoi KH et al (2012) Immunoglobulin analysis tool: a novel tool for the analysis of human and mouse heavy and light chain transcripts. Front Immunol 3:176

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hershberg U, Uduman M, Shlomchik MJ, Kleinstein SH (2008) Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int Immunol 20:683–694

    Article  CAS  PubMed  Google Scholar 

  56. Uduman M, Yaari G, Hershberg U et al (2011) Detecting selection in immunoglobulin sequences. Nucleic Acids Res 39:W499–W504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yaari G, Uduman M, Kleinstein SH (2012) Quantifying selection in high-throughput Immunoglobulin sequencing data sets. Nucleic Acids Res 40:e134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. West AP Jr, Scharf L, Scheid JF et al (2014) Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 156:633–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frölich D, Giesecke C, Mei HE et al (2010) Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J Immunol 185:3103–3110

    Article  PubMed  Google Scholar 

  60. Wrammert J, Smith K, Miller J et al (2008) Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453:667–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang N, He J, Weinstein JA et al (2013) Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med 5:171ra19

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bashford-Rogers R, Palser AL, Huntly BJ et al (2013) Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res 23:1874–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lavinder JJ, Wine Y, Giesecke C et al (2014) Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc Natl Acad Sci U S A 111:2259–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barak M, Zuckerman NS, Edelman H et al (2008) IgTree©: creating immunoglobulin variable region gene lineage trees. J Immunol Methods 338:67–74

    Article  CAS  PubMed  Google Scholar 

  65. Sok D, Laserson U, Laserson J et al (2013) The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. PLoS Pathog 9:e1003754

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lees WD, Shepherd AJ (2015) Utilities for high-throughput analysis of B-cell clonal lineages. J Immunol Res, Article ID 323506

    Google Scholar 

  67. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu X, Zhou T, Zhu J et al (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333:1593–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian J. Shepherd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lees, W.D., Shepherd, A.J. (2017). Studying Antibody Repertoires with Next-Generation Sequencing. In: Keith, J. (eds) Bioinformatics. Methods in Molecular Biology, vol 1526. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6613-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6613-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6611-0

  • Online ISBN: 978-1-4939-6613-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics