Skip to main content

Synchronization of Mammalian Cells and Nuclei by Centrifugal Elutriation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1524))

Abstract

Synchronized populations of large numbers of cells can be obtained by centrifugal elutriation on the basis of sedimentation properties of small round particles, with minimal perturbation of cellular functions. The physical characteristics of cell size and sedimentation velocity are operative in the technique of centrifugal elutriation also known as counterstreaming centrifugation. The elutriator is an advanced device for increasing the sedimentation rate to yield enhanced resolution of cell separation. A random population of cells is introduced into the elutriation chamber of an elutriator rotor running in a specially designed centrifuge. By increasing step-by-step the flow rate of the elutriation fluid, successive populations of relatively homogeneous cell size can be removed from the elutriation chamber and used as synchronized subpopulations. For cell synchronization by centrifugal elutriation, early log S phase cell populations are most suitable where most of the cells are in G1 and S phase (>80 %). Apoptotic cells can be found in the early elutriation fractions belonging to the sub-Go window. Protocols for the synchronization of nuclei of murine pre-B cells and high-resolution centrifugal elutriation of CHO cells are given. The verification of purity and cell cycle positions of cells in elutriated fractions includes the measurement of DNA synthesis by [3H]-thymidine incorporation and DNA content by propidium iodide flow cytometry.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lindahl PE (1948) Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 161:648–649

    Article  CAS  PubMed  Google Scholar 

  2. McEwen CR, Stallard RW, Juhos ET (1968) Separation of biological particles by centrifugal elutriation. Anal Biochem 23:369–377

    Article  CAS  PubMed  Google Scholar 

  3. Sanderson RJ, Bird KE, Palmer NF, Brenman J (1976) Design principles for a counterflow centrifugation cell separation chamber. Appendix: a derivation of the equation of motion of a particle under combined centrifugal and hydrodynamic fields. Anal Biochem 71:615–622

    Article  CAS  PubMed  Google Scholar 

  4. Pretlow TG 2nd, Pretlow TP (1979) Centrifugal elutriation (counterstreaming centrifugation) of cells. Cell Biophys 1:195–210

    Article  PubMed  Google Scholar 

  5. Meistrich ML (1983) Experimental factors involved in separation by centrifugal elutriation. In: Pretlow TG II, Pretlow TP (eds) Cell separation, vol 2. Academic, New York, pp 33–61

    Chapter  Google Scholar 

  6. Childs GV, Lloyd JM, Unabia G, Rougeau D (1988) Enrichment of corticotropes by counterflow centrifugation. Endocrinology 123:2885–2895

    Article  CAS  PubMed  Google Scholar 

  7. Kauffman MG, Noga SJ, Kelly TJ, Donnenberg AD (1990) Isolation of cell cycle fractions by counterflow centrifugal elutriation. Anal Biochem 191:41–46

    Article  CAS  PubMed  Google Scholar 

  8. Bauer J (1999) Advances in cell separation: recent developments in counterflow centrifugal elutriation and continuous flow cell separation. J Chromatogr B Biomed Sci Appl 722:55–69

    Article  CAS  PubMed  Google Scholar 

  9. Chianea T, Assidjo NE, Cardot PJP (2000) Sedimentation field-flow-fractionation: emergence of a new cell separation methodology. Talanta 51:835–847

    Article  CAS  PubMed  Google Scholar 

  10. Uzbekov RE (2004) Analysis of the cell cycle and a method employing synchronized cells for study of protein expression at various stages of the cell cycle. Biochemistry 69:485–496

    CAS  PubMed  Google Scholar 

  11. Banfalvi G (2008) Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat Protoc 3:663–673

    Article  CAS  PubMed  Google Scholar 

  12. Keng PC, Li CK, Wheeler KT (1980) Synchronization of 9L rat brain tumor cells by centrifugal elutriation. Cell Biophys 2:191–206

    Article  CAS  PubMed  Google Scholar 

  13. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  CAS  PubMed  Google Scholar 

  14. Doleel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  Google Scholar 

  15. Terry NHA, White RA (2006) Flow cytometry after bromodeoxyuridine labeling to measure S and G2/M phase durations plus doubling times in vitro and in vivo. Nat Protoc 1:859–869

    Article  CAS  PubMed  Google Scholar 

  16. Schmid I, Uittenbogaart C, Jamieson BD (2006) Live-cell assay for detection of apoptosis by dual-laser flow cytometry using Hoechst 33342 and 7-aminoactinomycin D. Nat Protoc 1:187–190

    Article  Google Scholar 

  17. Mukhopadhyay P, Rajesh M, Haskó G, Hawkins BJ, Madesh M, Pacher P (2007) Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2:2295–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferlini C, Scambia G (2007) Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange. Nat Protoc 2:3111–3114

    Article  CAS  PubMed  Google Scholar 

  19. van Genderen H, Kenis H, Lux P, Ungeth L, Maassen C, Deckers N et al (2006) In vitro measurement of cell death with the annexin A5 affinity assay. Nat Protoc 1:363–367

    Article  PubMed  Google Scholar 

  20. Quah BJC, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2:2049–2056

    Article  CAS  PubMed  Google Scholar 

  21. Chattopadhyay PK, Yu J, Roederer M (2006) Live-cell assay to detect antigenspecific CD4+ T-cell responses by CD154 expression. Nat Protoc 1:1–6

    Article  CAS  PubMed  Google Scholar 

  22. Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R (2006) Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 1:73–79

    Article  CAS  PubMed  Google Scholar 

  23. Offer H, Zurer I, Banfalvi G, Rehak M, Falcovitz A, Milyavsky M et al (2001) p53 modulates base excision repair activity in a cell cycle specific manner following genotoxic stress. Cancer Res 61:88–96

    CAS  PubMed  Google Scholar 

  24. Basnakian A, Banfalvi G, Sarkar N (1989) Contribution of DNA polymerase delta to DNA replication in permeable CHO cells synchronized in S phase. Nucleic Acids Res 17:4757–4767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banfalvi G, Nagy G, Gacsi M, Roszer T, Basnakian A (2006) Common pathway of chromatin condensation in mammalian cells. DNA Cell Biol 25:295–301

    Article  CAS  PubMed  Google Scholar 

  26. Rehak M, Csuka I, Szepessy E, Banfalvi G (2000) Subphases of DNA replication in Drosophila cells. DNA Cell Biol 19:607–612

    Article  CAS  PubMed  Google Scholar 

  27. Banfalvi G (2006) Structure of interphase chromosomes in the nuclei of Drosophila cells. DNA Cell Biol 25:547–553

    Article  CAS  PubMed  Google Scholar 

  28. Banfalvi G, Littlefield N, Hass B, Mikhailova M, Csuka I, Szepessy E et al (2000) Effect of cadmium on the relationship between replicative and repair DNA synthesis in synchronized CHO cells. Eur J Biochem 267:6580–6585

    Article  CAS  PubMed  Google Scholar 

  29. Coulter WH (1957) High speed automatic blood cell counter and cell size analyzer. Proc Natl Electron Conf 12:1034–1040

    Google Scholar 

  30. Banfalvi G, Mikhailova M, Poirier LA, Chou MW (1997) Multiple subphases of DNA replication in CHO cells. DNA Cell Biol 16:1493–1498

    Article  CAS  PubMed  Google Scholar 

  31. Banfalvi G, Poirier AL, Mikhailova M, Chou WM (1997) Relationship of repair and replicative DNA synthesis to cell cycle in Chinese hamster Ovary (CHO-K1) cells. DNA Cell Biol 16:1155–1160

    Article  CAS  PubMed  Google Scholar 

  32. Szepessy E, Nagy G, Jenei Z, Serfozo Z, Csuka I, James J et al (2003) Multiple subphases of DNA repair and poly(ADP-ribose) synthesis in Chinese hamster ovary (CHO-K1) cells. Eur J Cell Biol 82:201–207

    Article  CAS  PubMed  Google Scholar 

  33. Banfalvi G, Ujvarosi K, Trencsenyi G, Somogyi C, Nagy G, Basnakian AG (2007) Cell culture dependent toxicity and chromatin changes upon cadmium treatment in murine pre-B cells. Apoptosis 12:1219–1228

    Article  CAS  PubMed  Google Scholar 

  34. Guidozzi F (1997) Enrichment of ovarian cancer cell suspensions by centrifugal elutriation after density gradient purification. Int J Gynecol Cancer 7:100–105

    Article  Google Scholar 

  35. Banfalvi G, Klaisz M, Ujvarosi K, Trencsenyi G, Rozsa D, Nagy G (2007) Gamma irradiation induced apoptotic changes in the chromatin structure of human erythroleukemia K562 cells. Apoptosis 12:2271–2283

    Article  CAS  PubMed  Google Scholar 

  36. Fransen JH, Dieker JW, Hilbrands LB, Berden JH, van der Vlag J (2011) Synchronized turbo apoptosis induced by cold-shock. Apoptosis 16:86–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the OTKA grant TO42762 (G.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspar Banfalvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Banfalvi, G. (2017). Synchronization of Mammalian Cells and Nuclei by Centrifugal Elutriation. In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 1524. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6603-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6603-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6602-8

  • Online ISBN: 978-1-4939-6603-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics