Skip to main content

Synchronization of In Vitro Maturation in Porcine Oocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1524))

Abstract

When removed from the follicles, during the 44 h process of in vitro maturation (IVM) fully grown porcine oocytes resume meiosis spontaneously from the late diplotene stage of the first meiotic prophase and proceed to the metaphase-II (MII) stage at which they remain arrested until fertilization. However, the spontaneous resumption may start at various times causing heterogeneity in the nuclear stage and also in cytoplasmic characteristics within a population. Those oocytes that reach the MII stage earlier than others undergo an aging process which is detrimental for further embryo development. The synchronization of nuclear progression of porcine oocytes can be achieved by a transient inhibition of meiotic resumption during the first 20–22 h of IVM by the elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) using the cellular membrane-permeable analog of cAMP, dibutyryl cyclic AMP. A simple and efficient protocol for such treatment is described below.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Betthauser J, Forsberg E, Augenstein M, Childs L, Eilertsen K, Enos J et al (2000) Production of cloned pigs from in vitro systems. Nat Biotech 18:1055–1059

    Article  CAS  Google Scholar 

  2. Motlik J, Fulka J (1976) Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J Exp Zool 198:155–162

    Article  CAS  PubMed  Google Scholar 

  3. Pincus G, Enzmann EV (1935) The comparative behavior of mammalian eggs in vivo and in vitro. I. The activation of ovarian eggs. J Exp Med 62:665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wehrend A, Meinecke B (2001) Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the length of the meiotic stages. Anim Reprod Sci 66:175–184

    Article  CAS  PubMed  Google Scholar 

  5. Funahashi H, Cantley TC, Day BN (1997) Preincubation of cumulus–oocyte complexes before exposure to gonadotropins improves the developmental competence of porcine embryos matured and fertilized in vitro. Theriogenology 47:679–686

    Article  CAS  PubMed  Google Scholar 

  6. Nagai T, Ebihara M, Onishi A, Kubo M (1997) Germinal vesicle stages in pig follicular oocytes collected by different methods. J Reprod Dev 43:339–343

    Article  Google Scholar 

  7. Funahashi H, Cantley TC, Day BN (1997) Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization. Biol Reprod 57:49–53

    Article  CAS  PubMed  Google Scholar 

  8. Somfai T, Kikuchi K, Onishi A, Iwamoto M, Fuchimoto D, Papp AB et al (2004) Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes. Mol Reprod Dev 68:484–491

    Article  CAS  PubMed  Google Scholar 

  9. Miao YL, Kikuchi K, Sun QY, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15:573–585

    Article  PubMed  Google Scholar 

  10. Grupen CG, Nagashima H, Nottle MB (1997) Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization? Reprod Fertil Dev 9:187–191

    Article  CAS  PubMed  Google Scholar 

  11. Grupen CG (2014) The evolution of porcine embryo in vitro production. Theriogenology 81:24–37

    Article  PubMed  Google Scholar 

  12. Alfonso J, García-Rosello E, García-Mengual E, Salvador I, Silvestre MA (2009) The use of R-roscovitine to fit the “time frame” on in vitro porcine embryo production by intracytoplasmic sperm injection. Zygote 17:63–70

    Article  CAS  PubMed  Google Scholar 

  13. Lazzari G, Galli C, Moor RM (1992) Centrifugal elutriation of porcine oocytes isolated from the ovaries of newborn piglets. Anal Biochem 200:31–35

    Article  CAS  PubMed  Google Scholar 

  14. Banfalvi G (2008) Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat Protoc 3:663–673

    Article  CAS  PubMed  Google Scholar 

  15. Yoshioka K, Suzuki C, Onishi A (2008) Defined system for in vitro production of porcine embryos using a single basic medium. J Reprod Dev 54:208–213

    Article  PubMed  Google Scholar 

  16. Mcgaughey RW, Montgomery DH, Richter JD (1979) Germinal vesicle configurations and patterns of polypeptide synthesis of porcine oocytes from antral follicles of different size as related to their competency for spontaneous maturation. J Exp Zool 209:239–254

    Article  CAS  PubMed  Google Scholar 

  17. Marchal R, Vigneron C, Perreau C, Bali-Papp Á, Mermillod P (2002) Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 57:1523–1532

    Article  CAS  PubMed  Google Scholar 

  18. Iwamoto M, Onishi A, Fuchimoto D, Somfai T, Takeda K, Tagami T et al (2005) Low oxygen tension during in vitro maturation of porcine follicular oocytes improves parthenogenetic activation and subsequent development to the blastocyst stage. Theriogenology 63:1277–1289

    Article  PubMed  Google Scholar 

  19. Fuchimoto D, Senbon S, Suzuki S, Onishi A (2011) Effects of preservation of porcine oocytes by dibutyryl cyclic AMP on in vitro maturation, fertilization and development. Jpn Agr Res Q 45:295–300

    Article  Google Scholar 

  20. Somfai T, Kikuchi K, Onishi A, Iwamoto M, Fuchimoto D, Papp AB et al (2003) Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. Zygote 11:199–206

    Article  CAS  PubMed  Google Scholar 

  21. Kim JS, Cho YS, Song BS, Weec G, Park JS, Choo YK et al (2008) Exogenous dibutyryl cAMP affects meiotic maturation via protein kinase A activation; it stimulates further embryonic development including blastocyst quality in pigs. Theriogenology 69:290–301

    Article  CAS  PubMed  Google Scholar 

  22. Ozawa M, Nagai T, Somfai T, Nakai M, Maedomari N, Fahrudin M et al (2008) Comparison between effects of 3-isobutyl-1-methylxanthine and FSH on gap junctional communication, LH-receptor expression, and meiotic maturation of cumulus-oocyte complexes in pigs. Mol Reprod Dev 75:857–866

    Article  CAS  PubMed  Google Scholar 

  23. Bagg MA, Nottle MB, Grupen CG, Armstrong DT (2006) Effect of dibutyryl cAMP on the cAMP content, meiotic progression, and developmental potential of in vitro matured pre-pubertal and adult pig oocytes. Mol Reprod Dev 73:1326–1332

    Article  CAS  PubMed  Google Scholar 

  24. Racowsky C (1985) Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte-cumulus complexes. J Reprod Fertil 74:9–21

    Article  CAS  PubMed  Google Scholar 

  25. Shimada M, Nishibori M, Isobe N, Kawano N, Terada T (2003) Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes, and its role during meiotic maturation of porcine oocytes. Biol Reprod 68:1149–1159

    Google Scholar 

  26. Wu GM, Sun QY, Mao J, Lai L, McCauley TC, Park KW et al (2002) High developmental competence of pig oocytes after meiotic inhibition with a specific M-phase promoting factor kinase inhibitor, butyrolactone I. Biol Reprod 67:170–177

    Article  CAS  PubMed  Google Scholar 

  27. Marchal R, Tomanek M, Terqui M, Mermillod P (2001) Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes. Mol Reprod Dev 60:65–73

    Article  CAS  PubMed  Google Scholar 

  28. Schoevers EJ, Bevers MM, Roelen BA, Colenbrander B (2005) Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation. Theriogenology 63:1111–1130

    Article  CAS  PubMed  Google Scholar 

  29. Coy P, Romar R, Ruiz S, Cánovas S, Gadea J, García Vázquez F et al (2005) Birth of piglets after transferring of in vitro-produced embryos pre-matured with R-roscovitine. Reproduction 129:747–755

    Article  CAS  PubMed  Google Scholar 

  30. Sugimura S, Ritter LJ, Rose RD, Thompson JG, Smitz J, Mottershead DG et al (2015) Promotion of EGF receptor signaling improves the quality of low developmental competence oocytes. Dev Biol 403:139–149

    Article  CAS  PubMed  Google Scholar 

  31. Kikuchi K, Onishi A, Kashiwazaki N, Iwamoto M, Noguchi J, Kaneko H et al (2002) Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol Reprod 66:1033–1041

    Article  CAS  PubMed  Google Scholar 

  32. Hirao Y, Tsuji Y, Miyano T, Okano A, Miyake M, Kato S et al (1995) Association between p34cdc2 levels and meiotic arrest in pig oocytes during early growth. Zygote 3:325–332

    Article  CAS  PubMed  Google Scholar 

  33. Shimada M, Ito J, Yamashita Y, Okazaki T, Isobe N (2003) Phosphatidylinositol 3-kinase in cumulus cells is responsible for both suppression of spontaneous maturation and induction of gonadotropin-stimulated maturation of porcine oocytes. J Endocrinol 179:25–34

    Article  CAS  PubMed  Google Scholar 

  34. Maedomari N, Kikuchi K, Ozawa M, Noguchi J, Kaneko H, Ohnuma K et al (2007) Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology 67:983–993

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Somfai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Somfai, T., Hirao, Y. (2017). Synchronization of In Vitro Maturation in Porcine Oocytes. In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 1524. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6603-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6603-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6602-8

  • Online ISBN: 978-1-4939-6603-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics